Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 394, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918217

RESUMO

The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: • Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. • Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. • YQ/X values may support the selection of suitable fungal strains for pretreatment.


Assuntos
Fungos , Lignina , Triticum , Lignina/metabolismo , Triticum/microbiologia , Triticum/química , Fungos/metabolismo , Fermentação , Hidrólise , Agricultura/métodos
2.
J Environ Manage ; 331: 117316, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682276

RESUMO

Wood-rotting fungi and their enzymatic systems represent promising biocatalysts for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater. We designed a fungal wheel reactor (FWR) based on solid-state fermentation (SSF) of Trametes versicolor and a lignocellulosic substrate, which was used as an immobilization carrier for fungal biomass and the sole initial nutrient source for producing fungal oxidative enzymes. Three pharmaceutical and personal care products, acetaminophen, bisphenol A and carbamazepine, were spiked into the synthetic wastewater and the treatment was carried out under non-sterile conditions. Acetaminophen was completely removed from the FWR until laccase was observed. The acetaminophen removal efficiency was retrieved by replacing the fungal wheel with fresh SSF products. Bisphenol A and carbamazepine were removed via enzymatic activity and adsorption. When the fungal wheel was replaced, acetaminophen began to be completely removed, even after laccase depletion. The microbial community analysis indicated that the continuous removal of acetaminophen was mainly due to the high proportion of T. versicolor. The relative abundance of the co-occurring microbial community might be responsible for the divergence in acetaminophen removal between two of fungal wheel-replaced reactors. Overall, FWRs are promising tools for the removal of PPCPs by highly reactive enzymatic mechanisms as well as adsorption on the carrier surface. By replacing SSF and settled microbial communities, FWRs may continuously contribute to bioremediation over a long-term period.


Assuntos
Cosméticos , Águas Residuárias , Fermentação , Reatores Biológicos/microbiologia , Acetaminofen , Trametes , Lacase , Preparações Farmacêuticas
3.
World J Microbiol Biotechnol ; 34(9): 133, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30109517

RESUMO

The ability of the litter-decomposing basidiomycete Stropharia rugosoannulata DSM 11372 to degrade a wide range of structurally different environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs: phenanthrene, anthracene, fluorene, pyrene, and fluoranthene), synthetic anthraquinone dyes containing condensed aromatic rings, environmentally relevant alkylphenol and oxyethylated alkylphenol representatives, and oil was demonstrated within the present study. 9,10-Anthraquinone, phenanthrene-9,10-quinone, and 9-fluorenone were identified as products of anthracene, phenanthrene, and fluorene degradation, respectively. Fungal degradation was accompanied by the production of the ligninolytic enzymes: laccase and Mn peroxidase, suggesting their involvement in pollutant degradation. Extracellular polysaccharide(s) (EPS) and emulsifying compound(s) were concomitantly produced. EPS composed of mannose, glucose, and galactose was isolated from the cultivation medium, and its effects on catalytic properties of purified laccase from S. rugosoannulata (the dominating ligninolytic enzyme under the applied conditions) were studied. A simultaneous decrease of KM and Vmax values observed for the enzymatic oxidation of non-phenolic (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt; ABTS) and phenolic compounds (2,6-dimethoxyphenol) in presence of EPS suggest an interaction of EPS and laccase resulting in a modulation of the catalytic performance of the enzyme, which has, to the best of our knowledge, not been reported before. In line with such a modulation, the laccase-catalyzed oxidation of natural aromatic compounds (veratryl alcohol, adlerol) and environmental pollutants (the alkylphenol representative nonylphenol, the diphenylmethane derivative bisphenol A, and the PAH representative anthracene) was found to be enhanced in presence of EPS. The relevance of such effects for real environmental processes and their implications remain to be investigated.


Assuntos
Adaptação Fisiológica , Agaricales/enzimologia , Agaricales/fisiologia , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Antracenos/metabolismo , Compostos Benzidrílicos/metabolismo , Biotransformação , Poluentes Ambientais , Fluorenos/metabolismo , Hidrocarbonetos Cíclicos/metabolismo , Lacase/metabolismo , Oxirredução , Peroxidases/metabolismo , Fenantrenos/metabolismo , Fenóis/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo
4.
Appl Microbiol Biotechnol ; 100(5): 2381-99, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26536880

RESUMO

The environmentally widespread micropollutants bisphenol A (BPA), carbamazepine (CBZ), 17α-ethinylestradiol (EE2), diclofenac (DF), sulfamethoxazole (SMX), technical nonylphenol (t-NP) and triclosan (TCS) were used to assess the potential of the laccase-producing freshwater ascomycete Phoma sp. strain UHH 5-1-03 for micropollutant removal and to provide quantitative insights into the mechanisms involved. Biotransformation rates observed with whole fungal cells followed the rank order EE2 ≫ BPA > TCS > t-NP > DF > SMX > CBZ. Biosorption onto fungal mycelia was prominent for BPA, EE2, TCS and t-NP and insignificant for CBZ, DF and SMX. Enzymatic removal rates investigated with cell-free, laccase-containing culture supernatants of Phoma sp. followed the rank order EE2 > BPA > DF > t-NP > TCS and were insignificant for SMX and CBZ. Mass spectrometry-assisted investigations addressing metabolite formation from unlabelled and (13)C6-labelled DF and SMX yielded DF metabolites indicating hydroxylation, cyclisation and decarboxylation reactions, as well as oxidative coupling typical for laccase reactions. For SMX, several products characterised by lower molecular masses than the parent compound were found, and indications for deamination and formamide formation were obtained. Summarising, the obtained results suggest that the extracellular laccase of Phoma sp. largely contributes to fungal biotransformation of EE2, BPA, DF, TCS and t-NP, together with cell-associated enzymes such as, e.g. cytochrome P450 monooxygenases suggested by the appearance of hydroxylated metabolites from DF. Laccase does not seem to play any role in the metabolisation of SMX and CBZ, where yet to be identified cell-associated enzymes have to be considered instead.


Assuntos
Ascomicetos/metabolismo , Fenômenos Químicos , Disruptores Endócrinos/metabolismo , Água Doce/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção , Biotransformação , Água Doce/química , Espectrometria de Massas , Redes e Vias Metabólicas
5.
Appl Microbiol Biotechnol ; 99(21): 8857-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318446

RESUMO

Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics. Laboratory studies have reported various effects of microorganisms on many types of polymers, usually by enzymatic hydrolysis or oxidation. However, most common plastics have proved to be highly recalcitrant even under conditions known to favour microbial degradation. Knowledge on environmental degradation is yet scarcer. With this review, we provide a comprehensive overview of the current knowledge on microbiological degradation of several of the most common plastic types. Furthermore, we illustrate the analytical challenges concerning the evaluation of plastic biodegradation as well as constraints likely standing against the evolution of effective biodegradation pathways.


Assuntos
Poluentes Ambientais/metabolismo , Poluição Ambiental , Plásticos/metabolismo , Biotransformação , Hidrólise , Oxirredução
6.
Planta ; 240(6): 1225-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25115562

RESUMO

MAIN CONCLUSION: A green algal phenol oxidase was firstly purified, confirmed to be a laccase, and a hetero-oligomeric quaternary structure is suggested. The operation of a laccase-mediator system is firstly described in algae. Laccases (EC 1.10.3.2) catalyze the oxidation of a multitude of aromatic substrates. They are well known in higher plants and fungi, while their presence in green algae appears uncertain. Extracellular laccase-like enzyme activity has previously been described in culture supernatants of the green soil alga Tetracystis aeria [Otto et al. in Arch Microbiol 192:759-768, (2010)]. As reported herein, the T. aeria enzyme was purified 120-fold by employing a combination of anion exchange and size exclusion chromatography. The purified enzyme was confirmed to be a laccase according to its substrate specificity. It oxidizes 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (pH optima of pH ≤ 2.5, 7.0, and 6.5; K m values of 28.8, 40.5, and 1,830 µM; respectively), but not L-tyrosine or Fe(2+). ABTS is by far the most efficient substrate. Two polypeptides, A (~110 kDa) and B (71 kDa), were co-purified by the applied procedure, both being highly N-glycosylated (≥~53 and ≥ 27 %, respectively). As suggested by various gel electrophoretic analyses, the native enzyme (apparent molecular mass of ~220 kDa) most probably is a hetero-oligomer with the composition AB 2 , wherein A is the catalytic subunit and B forms a disulfide-linked homo-dimer B2. The decolorization of anthraquinone (Acid Blue 62 and Remazol Brilliant Blue R) and diazo dyes (Reactive Black 5) was studied in the presence of redox-mediating compounds (ABTS and syringaldehyde), demonstrating the operation of the laccase-mediator system in algae for the first time. Thus, laccases from green algae may participate in the biotransformation of a wide spectrum of natural and xenobiotic compounds.


Assuntos
Clorófitas/enzimologia , Espaço Extracelular/enzimologia , Lacase/metabolismo , Monofenol Mono-Oxigenase/isolamento & purificação , Monofenol Mono-Oxigenase/metabolismo , Biodegradação Ambiental , Cor , Corantes/metabolismo , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Monofenol Mono-Oxigenase/química , Oxirredução , Especificidade por Substrato
7.
Molecules ; 19(8): 11860-82, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25111026

RESUMO

The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.


Assuntos
Biodegradação Ambiental , Enzimas Imobilizadas/química , Lacase/química , Purificação da Água , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Reatores Biológicos , Elétrons , Humanos , Fenóis/química , Fenóis/metabolismo , Porosidade , Águas Residuárias/química
8.
Appl Environ Microbiol ; 78(13): 4732-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544244

RESUMO

To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 µM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats.


Assuntos
Ascomicetos/enzimologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Lacase/biossíntese , Manganês/metabolismo , Fenóis/metabolismo , Ácido Vanílico/metabolismo , Zinco/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Cobre/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
9.
N Biotechnol ; 66: 97-106, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767975

RESUMO

The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.


Assuntos
Ascomicetos , Calorimetria/métodos , Fermentação , Lignina , Ascomicetos/metabolismo , Biomassa , Microbiologia Industrial , Lignina/metabolismo
10.
Microorganisms ; 10(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014092

RESUMO

In the present study, we investigated whether a non-invasive metabolic heat flux analysis could serve the determination of the functional traits in free-living saprotrophic decomposer fungi and aid the prediction of fungal influences on ecosystem processes. For this, seven fungi, including ascomycete, basidiomycete, and zygomycete species, were investigated in a standardised laboratory environment, employing wheat straw as a globally relevant lignocellulosic substrate. Our study demonstrates that biocalorimetry can be employed successfully to determine growth-related fungal activity parameters, such as apparent maximum growth rates (AMGR), cultivation times until the observable onset of fungal growth at AMGR (tAMGR), quotients formed from the AMGR and tAMGR (herein referred to as competitive growth potential, CGP), and heat yield coefficients (YQ/X), the latter indicating the degree of resource investment into fungal biomass versus other functional attributes. These parameters seem suitable to link fungal potentials for biomass production to corresponding ecological strategies employed during resource utilisation, and therefore may be considered as fungal life history traits. A close connection exists between the CGP and YQ/X values, which suggests an interpretation that relates to fungal life history strategies.

11.
J Fungi (Basel) ; 8(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736082

RESUMO

Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.

12.
Sci Rep ; 12(1): 2666, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177693

RESUMO

The continuing reports of plastic pollution in various ecosystems highlight the threat posed by the ever-increasing consumption of synthetic polymers. Therefore, Pseudomonas capeferrum TDA1, a strain recently isolated from a plastic dump site, was examined further regarding its ability to degrade polyurethane (PU) compounds. The previously reported degradation pathway for 2,4-toluene diamine, a precursor and degradation intermediate of PU, could be confirmed by RNA-seq in this organism. In addition, different cell fractions of cells grown on a PU oligomer were tested for extracellular hydrolytic activity using a standard assay. Strikingly, purified outer membrane vesicles (OMV) of P. capeferrum TDA1 grown on a PU oligomer showed higher esterase activity than cell pellets. Hydrolases in the OMV fraction possibly involved in extracellular PU degradation were identified by mass spectrometry. On this basis, we propose a model for extracellular degradation of polyester-based PUs by P. capeferrum TDA1 involving the role of OMVs in synthetic polymer degradation.


Assuntos
Fenilenodiaminas/metabolismo , Poliuretanos/metabolismo , Pseudomonas/metabolismo , Biodegradação Ambiental
13.
Methods Enzymol ; 648: 71-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579418

RESUMO

Environmental pollution with synthetic polymers (commonly named plastics) nowadays poses serious threats to the environment and human health. Unfortunately, most conventional plastics are highly recalcitrant even under conditions known to be favorable for microbial degradation. Expanding the knowledge regarding opportunities and limitations of the microbial degradability of plastics would largely contribute to the development of adequate decontamination and management strategies for plastic pollution. This chapter provides cultivation approaches to be applied for the characterization of eco-physiologically diverse asco- and basidiomycete fungi with respect to their ability to attack solid and water-soluble synthetic polymers with the help of quinone redox cycling-based Fenton-type reactions, which result in the production of highly reactive hydroxyl radicals. These reactive oxygen species are the strongest oxidants known from biological systems. However, their potential employment by fungi dwelling in diverse habitats as a biodegradation tool to attack synthetic polymers is still insufficiently explored.


Assuntos
Fungos , Plásticos , Biodegradação Ambiental , Fungos/metabolismo , Humanos , Oxirredução , Plásticos/metabolismo , Polímeros
14.
ISME Commun ; 1(1): 75, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765263

RESUMO

The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.

15.
J Fungi (Basel) ; 7(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682274

RESUMO

Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.

16.
Arch Microbiol ; 192(9): 759-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20623267

RESUMO

Laccases (EC 1.10.3.2) are versatile multi-copper oxidases so far found in higher plants, fungi, insects, prokaryotes and lichens. In the present study, the production of an extracellular laccase-like enzyme by the coccoid green soil alga Tetracystis aeria was investigated and the enzyme was partly characterized, thereby providing the first description of a laccase-like enzyme in soil algae. Enzyme production in algae cultures was considerably increased by addition of the fungal laccase inducer copper sulphate. Maximal enzyme production was observed during the stationary growth phase. Peroxidase or tyrosinase activity was not detected. The native enzyme exhibits an apparent molecular mass of about 212 kDa as observed with size exclusion chromatography and about 210-260 kDa as estimated by zymograms. The enzyme efficiently oxidizes 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ) and the anthraquinone dye Acid Blue 62, while guaiacol and Remazol Brilliant Blue R are only poorly oxidized. The apparent kinetic parameters obtained for ABTS, 2,6-DMP and SGZ oxidation are within the range reported for fungal laccases. Oxidation of the phenolic substrate 2,6-DMP displays a remarkably high pH optimum (pH 8.0-8.5), which is interesting with respect to potential biotechnological applications.


Assuntos
Proteínas de Algas/isolamento & purificação , Clorófitas/enzimologia , Lacase/isolamento & purificação , Solo , Proteínas de Algas/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Peso Molecular , Oxirredução , Fenóis/metabolismo
17.
Front Microbiol ; 11: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180766

RESUMO

Phthalate esters (PEs, Phthalates) are environmentally ubiquitous as a result of their extensive use as plasticizers and additives in diverse consumer products. Considerable concern relates to their reported xenoestrogenicity and consequently, microbial-based attenuation of environmental PE concentrations is of interest to combat harmful downstream effects. Fungal PE catabolism has received less attention than that by bacteria, and particularly fungi dwelling within aquatic environments remain largely overlooked in this respect. We have compared the biocatalytic and biosorptive removal rates of di-n-butyl phthalate (DBP) and diethyl phthalate (DEP), chosen to represent two environmentally prominent PEs of differing structure and hydrophobicity, by marine-, freshwater-, and terrestrial-derived fungal strains. Bisphenol A, both an extensively used plastic additive and prominent environmental xenoestrogen, was included as a reference compound due to its well-documented fungal degradation. Partial pathways of DBP metabolization by the ecophysiologically diverse asco- and basidiomycete strains tested were proposed with the help of UPLC-QTOF-MS analysis. Species specific biochemical reaction steps contributing to DBP metabolism were also observed. The involved reactions include initial cytochrome P450-dependent monohydroxylations of DBP with subsequent further oxidation of related metabolites, de-esterification via either hydrolytic cleavage or cytochrome P450-dependent oxidative O-dealkylation, transesterification, and demethylation steps - finally yielding phthalic acid as a central intermediate in all pathways. Due to the involvement of ecophysiologically and phylogenetically diverse filamentous and yeast-like fungi native to marine, freshwater, and terrestrial habitats the results of this study outline an environmentally ubiquitous pathway for the biocatalytic breakdown of plastic additives. Beyond previous research into fungal PE metabolism which emphasizes hydrolytic de-esterification as the primary catabolic step, a prominent role of cytochrome P450 monooxygenase-catalyzed reactions is established.

18.
Microbiologyopen ; 9(2): e971, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782612

RESUMO

Silage, the fermented product from anaerobic storage of forage crops with high water contents (50%-70%), is normally used as animal feed but also for the production of biofuels and value-added products. To improve the utilization of plant fibers during ensiling, previous attempts have aimed at breaking linkages between lignin and hemicellulose by use of Lactobacillus buchneri LN 4017 (ATCC PTA-6138), a feruloyl esterase (FAE)-producing strain, but results have been inconsistent. Normally, there are sufficient amounts of readily available substrates for bacterial growth in silage. We thus hypothesized that the inconsistent effect of L. buchneri LN 4017 on the digestibility of silage fibers is due to the catabolic repression of FAE activity by substrates present in silage (e.g., glucose). To test this hypothesis, we analyzed the effect of glucose on the de-esterification of methyl ferulate (MF), a model substrate used for FAE activity assays. At three glucose:MF ratios (0:1, 1:1, and 13:1), the bacteria continued hydrolyzing MF with increasing glucose:MF ratios, indicating that the de-esterification reaction was not repressed by glucose. We therefore conclude that the de-esterification activity of L. buchneri LN 4017 is not repressed by silage substrates during ensiling.


Assuntos
Ácidos Cafeicos/metabolismo , Glucose/metabolismo , Lactobacillus/metabolismo , Esterificação
19.
Appl Environ Microbiol ; 75(13): 4398-409, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429559

RESUMO

The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary alpha-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/metabolismo , Lacase/metabolismo , Fenóis/metabolismo , Biotransformação , Espectrometria de Massas , Redes e Vias Metabólicas , Modelos Biológicos , Oxirredução , Fenóis/química , Estereoisomerismo
20.
FEMS Microbiol Lett ; 288(1): 47-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18764877

RESUMO

We investigated the influence of potential laccase inducers with environmental relevance on extracellular laccase activity and removal of the xenoestrogen technical nonylphenol (tNP) by the aquatic hyphomycete Clavariopsis aquatica. Concomitantly, we identified two putative laccase gene fragments (Icc1 and Icc2) and have followed their expression during removal of tNP under different conditions. Our results indicate a significant effect of copper on extracellular laccase activity in supernatants of fungal cultures. Laccase activity was highest in the presence of copper when added together with vanillic acid, followed by copper when used alone. Only slight laccase activities were recorded in the presence of only vanillic acid, whereas in the absence of either compound laccase activities were negligible. Laccase activity was well correlated with the removal efficiency of tNP, indicating the involvement of laccase in tNP bioconversion. Overall, Icc2 was less expressed than Icc1. The expression of Icc1 and Icc2 correlated only partially with the measured laccase activity, suggesting the existence of cell-associated laccase fractions not detectable in fungal culture supernatants and/or the existence of additional laccase genes.


Assuntos
Espaço Extracelular/enzimologia , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Fungos Mitospóricos/enzimologia , Fenóis/metabolismo , Transcrição Gênica , Poluentes Químicos da Água/metabolismo , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Biodegradação Ambiental , Espaço Extracelular/química , Espaço Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lacase/química , Lacase/genética , Fungos Mitospóricos/química , Fungos Mitospóricos/genética , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA