Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(1): 141-153, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34939800

RESUMO

We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF2(3,5-lut)4·2H2O and NiX2(3,5-lut)4, where X = HF2, Cl, Br, or I (lut = lutidine C7H9N). Upon creation of isolated Ni-X···X-Ni and Ni-F-H-F···F-H-F-Ni chains separated by bulky and nonbridging lutidine ligands, the effect that halogen substitution has on the magnetic properties of transition-metal-ion complexes can be investigated directly and in isolation from competing processes such as Jahn-Teller distortions. We find that substitution of the larger halide ions turns on increasingly strong antiferromagnetic interactions between adjacent Ni2+ ions via a novel through-space two-halide exchange. In this process, the X···X bond lengths in the Br and I materials are more than double the van der Waals radius of X yet can still mediate significant magnetic interactions. We also find that a simple model based on elongation/compression of the Ni2+ octahedra cannot explain the observed single-ion anisotropy in mixed-ligand compounds. We offer an alternative that takes into account the difference in the electronegativity of axial and equatorial ligands.

2.
Phys Rev Lett ; 120(24): 247601, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957011

RESUMO

By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ-(BEDT-TTF)_{2}Hg(SCN)_{2}Cl, we provide evidence for order-disorder type electronic ferroelectricity that is driven by the charge order within the (BEDT-TTF)_{2} dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and nondimerized or weakly dimerized systems at 1/4 filling, exhibiting a charge order. Our results indicate that intradimer charge degrees of freedom are of particular importance in correlated κ-(BEDT-TTF)_{2}X salts and can create novel states, such as electronically driven multiferroicity or charge-order-induced quasi-one-dimensional spin liquids.

3.
Inorg Chem ; 55(5): 1956-61, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26863096

RESUMO

We combined synchrotron-based infrared spectroscopy, Raman scattering, and diamond anvil cell techniques with complementary lattice dynamics calculations to reveal local lattice distortions in Mn[N(CN)2]2 under compression. Strikingly, we found a series of transitions involving octahedral counter-rotations, changes in the local Mn environment, and deformations of the superexchange pathway. In addition to reinforcing magnetic property trends, these pressure-induced local lattice distortions may provide an avenue for the development of new functionalities.

4.
Proc Natl Acad Sci U S A ; 110(9): 3293-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23404698

RESUMO

When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these "quantum critical" superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature T(c) often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below T(c) is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points, showing that the superfluid density in these nodal superconductors universally exhibits, unlike the expected T-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this noninteger power law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k close to the nodes in the superconducting energy gap Δ(k). We suggest that such "nodal criticality" may have an impact on low-energy properties of quantum critical superconductors.

5.
Phys Rev Lett ; 113(22): 227203, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494085

RESUMO

We present thermodynamic studies of a new spin-1/2 antiferromagnet containing undistorted kagome lattices-barlowite Cu_{4}(OH)_{6}FBr. Magnetic susceptibility gives θ_{CW}=-136 K, while long-range order does not happen until T_{N}=15 K with a weak ferromagnetic moment µ<0.1µ_{B}/Cu. A 60 T magnetic field induces a moment less than 0.5µ_{B}/Cu at T=0.6 K. Specific-heat measurements have observed multiple phase transitions at T≪∣θ_{CW}∣. The magnetic entropy of these transitions is merely 18% of k_{B}ln2 per Cu spin. These observations suggest that nontrivial spin textures are realized in barlowite with magnetic frustration. Comparing with the leading spin-liquid candidate herbertsmithite, the superior interkagome environment of barlowite sheds light on new spin-liquid compounds with minimum disorder. The robust perfect geometry of the kagome lattice makes charge doping promising.

6.
Chemistry ; 20(18): 5460-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24644094

RESUMO

Coordination of a [Co(hfac)2] moiety (hfac = hexafluoroacetylacetonate) with a nitronylnitroxide radical linked to bulky, rigid pyrene (PyrNN) gives a helical 1:1 chain complex, in which both oxygen atoms of the radical NO(·) groups are bonded to Co(II) ions with strong antiferromagnetic exchange. The complex shows single-chain magnet (SCM) behavior with frequency-dependent magnetic susceptibility, field-cooled and zero-field-cooled susceptibility divergence with a high blocking temperature of around 14 K (a record among SCMs), and hysteresis with a very large coercivity of 32 kOe at 8 K. The magnetic behavior is partly related to good chain isolation induced by the large pyrene units. Two magnetic relaxation processes have been observed, a slower one attributable to longer, and a faster one attributable to short chains. No evidence of magnetic ordering has been found.

7.
Nat Mater ; 11(9): 755-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22886065

RESUMO

Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

8.
Phys Rev Lett ; 110(2): 027201, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383935

RESUMO

Microscopic structural instabilities of EuTiO3 single crystals were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedron rotational order was observed alongside Ti derived antiferroelectric distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The combination of electric and magnetic fields increases the population of the modulated AFD order, illustrating how the origin of the large magnetoelectric coupling derives from the dynamic equilibrium between AFD and polar instabilities.

9.
Phys Chem Chem Phys ; 15(11): 3764-71, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23389737

RESUMO

We report on the use of a petroleum coke-based activated carbon (AC) with very high surface area for a Li-O(2) battery cathode without the use of any additional metal catalysts. Electrochemical measurement in a tetra(ethylene) glycol dimethyl ether-lithium triflate (TEGDME-LiCF(3)SO(3)) electrolyte results in two voltage plateaus during charging at 3.2-3.5 and 4.2-4.3 V versus Li(+)/Li. Herein we present evidence from Raman and magnetic measurements that the lower plateau corresponds to a form of lithium peroxide with superoxide-like properties characterized by a low temperature magnetic phase transition and a high O-O stretching frequency (1125 cm(-1)). The magnetic phase transition and the high O-O stretching frequency disappear when charged to above 3.7 V. Theoretical calculations indicate that a surface superoxide structure on lithium peroxide clusters and some lithium peroxide surfaces have an unpaired electron and a high O-O stretching frequency that help explain the observations. These results provide evidence that the form of the lithium peroxide discharge product is important to obtaining a low charge overpotential, and thus improving the round-trip efficiency between discharge and charge.

10.
Nature ; 449(7162): 584-7, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17914392

RESUMO

On cooling through the transition temperature T(c) of a conventional superconductor, an energy gap develops as the normal-state charge carriers form Cooper pairs; these pairs form a phase-coherent condensate that exhibits the well-known signatures of superconductivity: zero resistivity and the expulsion of magnetic flux (the Meissner effect). However, in many unconventional superconductors, the formation of the energy gap is not coincident with the formation of the phase-coherent superfluid. Instead, at temperatures above the critical temperature a range of unusual properties, collectively known as 'pseudogap phenomena', are observed. Here we argue that a key pseudogap phenomenon-fluctuating superconductivity occurring substantially above the transition temperature-could be induced by the proximity of a Mott-insulating state. The Mott-insulating state in the kappa-(BEDT-TTF)2X organic molecular metals can be tuned, without doping, through superconductivity into a normal metallic state as a function of the parameter t/U, where t is the tight-binding transfer integral characterizing the metallic bandwidth and U is the on-site Coulomb repulsion. By exploiting a particularly sensitive probe of superconducting fluctuations, the vortex-Nernst effect, we find that a fluctuating regime develops as t/U decreases and the role of Coulomb correlations increases.

11.
J Chem Phys ; 138(1): 014701, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23298051

RESUMO

Pressure-dependent X-ray diffraction studies reveal the bulk modulus and compression anisotropy of the 2D magnet [Mn(TCNE)(NCMe)(2)]SbF(6). The Raman response of this and the similar [Fe(TCNE)(NCMe)(2)]FeCl(4) layered magnet, shows that the evolution of the a(g) ν(C=C) frequency correlates well with the magnetic exchange and T(c) variations of these materials under pressure. There is a significantly more complex correlation between the a(g) ν(C≡N) frequency and T(c) despite the fact that some unpaired π* electron density (~0.125 e) is localized on each of TCNE nitrile N≡C group. The shortening of the M-NC bond with pressure (<0.5 GPa) does not result in a T(c) increase, which suggests a more complex bond length magnetic exchange relationship.

12.
Phys Rev Lett ; 108(7): 077208, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401252

RESUMO

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.

13.
Inorg Chem ; 51(5): 3138-45, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22356306

RESUMO

2-(1'-Pyrenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (PyrNN) was reacted with M(hfac)(2) (M = Mn(II) and Co(II), hfac = hexafluoracetylacetonate) to give two isostructural ML(2) stoichiometry M(hfac)(2)(PyrNN)(2) complexes and a ML stoichiometry one-dimensional (1-D) polymer chain complex [Mn(hfac)(2)(PyrNN)]. The ML(2) complexes have similar crystal structures with monoclinic unit cells, in which one NO unit from each PyrNN ligand is bonded to the transition metal on cis vertices of a distorted octahedron. The major magnetic interactions are intracomplex metal-to-radical exchange (J), and intermolecular exchange across a close contact between the uncoordinated NO units (J'). For M = Mn(II) an approximate chain model fit gives g = 2.0, J = (-)125 cm(-1) and J' = (-)49 cm(-1); for M = Co(II), g = 2.4, J = (-)180 cm(-1), and J' = (-)70 cm(-1). Hybrid density functional theory (DFT) computations modeling the intermolecular exchange by using only the radical units across the close contact are in good accord with the estimated values of J'. The chain type complex structure shows solvent incorporation for overall structure [Mn(hfac)(2)(PyrNN)](n)·0.5(CHCl(3))·0.5(C(7)H(16)). Both NO groups of the PyrNN ligand are complexed to form helical chains, with very strong metal to radical antiferromagnetic exchange that gives overall ferrimagnetic behavior.

14.
Inorg Chem ; 51(4): 2121-9, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296451

RESUMO

The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, ß = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, ß = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.

15.
J Phys Chem C Nanomater Interfaces ; 126(4): 1890-1900, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145572

RESUMO

We report structural, transport, and optical properties and electronic structure calculations of the δ'-(BEDT-TTF)2CF3CF2SO3 (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) organic conductor that has been synthesized by electrocrystallization. Electronic structure calculations demonstrate the quasi-one-dimensional Fermi surfaces of the compound, while the optical spectra are characteristic for a dimer-Mott insulator. The single-crystal X-ray diffraction measurements reveal the structural phase transition at 200 K from the ambient-temperature monoclinic P21/m phase to the low-temperature orthorhombic Pca21 phase, while the resistivity measurements clearly show the first order semiconductor-semiconductor transition at the same temperature. This transition is accompanied by charge-ordering as it is confirmed by splitting of charge-sensitive vibrational modes observed in the Raman and infrared spectra. The horizontal stripe charge-order pattern is suggested based on the crystal structure, band structure calculations, and optical spectra.

16.
Science ; 372(6539): 276-279, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859031

RESUMO

Geometrical frustration, quantum entanglement, and disorder may prevent long-range ordering of localized spins with strong exchange interactions, resulting in an exotic state of matter. κ-(BEDT-TTF)2Cu2(CN)3 is considered the prime candidate for this elusive quantum spin liquid state, but its ground-state properties remain puzzling. We present a multifrequency electron spin resonance (ESR) study down to millikelvin temperatures, revealing a rapid drop of the spin susceptibility at 6 kelvin. This opening of a spin gap, accompanied by structural modifications, is consistent with the formation of a valence bond solid ground state. We identify an impurity contribution to the ESR response that becomes dominant when the intrinsic spins form singlets. Probing the electrons directly manifests the pivotal role of defects for the low-energy properties of quantum spin systems without magnetic order.

17.
J Am Chem Soc ; 132(46): 16308-10, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21038887

RESUMO

Single-crystal X-ray diffraction has shown that the high-critical-temperature (T(c)) phase of the filamentary molecular superconductor (BEDT-TTF)(2)Ag(CF(3))(4)(1,1,2-trichloroethane) [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] contains layers of BEDT-TTF radical cations with alternating κ- and α'-type packing motifs. This molecule-based superconductor with dual BEDT-TTF packing motifs has a T(c) five times higher than that of its polymorph that contains only κ-type packing.

18.
J Am Chem Soc ; 132(8): 2684-94, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20136137

RESUMO

We report the preparation of the first benzannulated phenalenyl neutral radical conductor (18), and we show that the compound displays unprecedented solid state behavior: the structure is dominated by two sets of intermolecular interactions: (1) a pi-chain structure with superimposed pi-overlap of the benzannulated phenalenyls along [0 0 1], and (2) an interchain overlap involving a pair of carbon atoms (C4) along [0 1 0]. The pi-chain-type stacking motif is reminiscent of previously reported phenalenyl radicals and the room temperature structure (space group P2/c) together with the conductivity of sigma(RT) = 0.03 S/cm and the Pauli-like magnetic susceptibility are best described by the resonating valence bond (RVB) model. The interchain interaction is unstable with respect to the formation of a sigma-charge density wave (sigma-CDW) involving pairs of C4 carbon atoms between adjacent radicals and this phase is characterized by the P2(1)/c space group which involves a doubling of the unit cell along the [0 1 0] direction. The RVB and CDW phases compete for structural occupancy throughout the whole temperature range (15-293 K) with the RVB phase predominating at 15 and 293 K and the sigma-CDW phase achieving a maximum structural occupancy of about 60% at 150 K where it produces clearly discernible effects on the magnetism and conductivity.

20.
ACS Nano ; 14(7): 8887-8893, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32574034

RESUMO

Charge density waves have been intensely studied in inorganic materials such as transition metal dichalcogenides; however their counterpart in organic materials has yet to be explored in detail. Here we report the finding of robust two-dimensional charge density waves in molecular layers formed by α-(BEDT-TTF)2-I3 on a Ag(111) surface. Low-temperature scanning tunneling microscopy images of a multilayer thick α-(BEDT-TTF)2-I3 on a Ag(111) substrate reveal the coexistence of 5a0 × 5a0 and 31a0×31a0 R9° charge density wave patterns commensurate with the underlying molecular lattice at 80 K. Both charge density wave patterns remain in nanosize molecular islands with just a single constituent molecular-layer thickness at 80 and 5 K. Local tunneling spectroscopy measurements reveal the variation of the gap from 244 to 288 meV between the maximum and minimum charge density wave locations. Density functional theory calculations further confirm a vertical positioning of BEDT-TTF molecules in the molecular layer. While the observed charge density wave patterns are stable for the defect sites, they can be reversibly switched for one molecular lattice site by means of inelastic tunneling electron energy transfer with the electron energies exceeding 400 meV using a scanning tunneling microscope manipulation scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA