Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Emerg Infect Dis ; 26(9): 2108-2117, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32818395

RESUMO

Restricting antibiotic use in food production animals is a target for reducing antimicrobial drug-resistant infections in humans. We used US surveillance data to estimate the probability of antibiotic-resistant nontyphoidal salmonellosis per meal made with beef during 2002-2010. Applying data for nontyphoidal Salmonella in raised-without-antibiotics cattle, we tested the effect of removing antibiotic use from all beef cattle production. We found an average of 1.2 (95% credible interval 0.6-4.2) antibiotic-resistant nontyphoidal salmonellosis cases per 1 million beef meals made with beef initially contaminated with antibiotic-resistant nontyphoidal Salmonella at slaughter or retail and 0.031 (95% credible interval 0.00018-0.14) cases per 1 million meals irrespective of beef contamination status. Neither outcome showed sustained change except for increases in 2003 and 2009 (>98% confidence) when larger or more outbreaks occurred. Switching all beef production to a raised-without-antibiotics system may not have a significant effect on antibiotic-resistant nontyphoidal salmonellosis (94.3% confidence).


Assuntos
Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Animais , Antibacterianos/farmacologia , Bovinos , Resistência Microbiana a Medicamentos , Microbiologia de Alimentos , Salmonella , Intoxicação Alimentar por Salmonella/epidemiologia , Infecções por Salmonella/epidemiologia , Estados Unidos/epidemiologia
2.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067201

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that has a significant impact on public health, with strains possessing the attachment factor intimin referred to as enterohemorrhagic E. coli (EHEC) and associated with life-threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n = 1,536) at two U.S. pork processors were sampled once per season at three stages of harvest (poststunning skins, postscald carcasses, and chilled carcasses) and then examined using PCR for Shiga toxin genes (stx), intimin genes (eae), aerobic plate count (APC), and Enterobacteriaceae counts (EBC). The prevalence of stx on skins, postscald, and chilled carcasses was 85.3, 17.5, and 5.4%, respectively, with 82.3, 7.8, and 1.7% of swabs, respectively, having stx and eae present. All stx-positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroups O121, O8, and O91 (63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00- and 2.50-log10 CFU/100 cm2, respectively. A seasonal effect was observed, with STEC prevalence lower (P < 0.05) in winter. The data from this study show significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx plus eae) from 82.3% to 1.7% within the slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCE Seven serogroups of STEC are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products, although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease-causing STEC, EHEC, demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


Assuntos
Microbiologia de Alimentos , Carne de Porco/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Estações do Ano , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/fisiologia , Estados Unidos
3.
Foodborne Pathog Dis ; 15(7): 444-448, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29672169

RESUMO

Carbapenems are classified as critically important antibiotics since they are employed when resistant Gram-negative bacterial infections fail to respond to other antibiotic therapies. Carbapenem-resistant bacteria (CRB) were traditionally understood to be rare in the U.S. food-producing animals. Recently, using quantitative polymerase chain reaction (qPCR), our group detected blaKPC-2 in all 72 metagenomic DNA (mgDNA) samples prepared from the feces of 36 lots of beef cattle "raised without antibiotics" (RWA) and 36 lots raised "conventionally" (CONV). Since a small internal fragment of the blaKPC-2 gene was targeted by the qPCR detection method, we sought to determine if functional blaKPC-2-like sequences are present in beef cattle feces. Full-length blaKPC-2 sequences were amplified from 18 mgDNA samples (9 CONV and 9 RWA), cloned into pCR4Blunt-TOPO vectors, and transformed into Escherichia coli TOP10 cells. All 14 of the samples with blaKPC-2 cloned in the same orientation as the Plac promoter had carbapenemase activity and imipenem minimum inhibitory concentrations ≥32 µg/mL. We conclude that the blaKPC-2 genes detected in our previous study were functional, which indicates that CRB were present in those fecal samples. Identification of functional Klebsiella pneumoniae carbapenemases in fecal samples from both CONV and RWA cattle strongly suggests that CRB are more common in U.S. beef cattle feces than previously believed. Critically, more research using similar qPCR methods to determine the levels of carbapenem-resistant genes in human feces, feces from other food animal species, wildlife, companion animals, and the environment are required to accurately assess public health implications.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Klebsiella pneumoniae/enzimologia , Carne Vermelha/microbiologia , beta-Lactamases/metabolismo , Animais , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Bovinos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Imipenem/farmacologia , Infecções por Klebsiella , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/veterinária , beta-Lactamases/genética
4.
Foodborne Pathog Dis ; 15(11): 689-697, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30109957

RESUMO

Approximately 20% of U.S. beef cattle receive prophylactic in-feed administration of chlortetracycline (CTC) to reduce bovine respiratory disease (BRD) incidence during the transition into feedlots. To determine the impact of prophylaxis on selected antimicrobial resistance genes (ARGs), 300 beef cattle were placed into 10 pens (30 head/pen). Five "CTC group" pens received in-feed CTC (10 mg/lb of body weight/d) from the fifth to ninth day after feedlot arrival, whereas the five "Control group" pens received no CTC. Fecal swabs and pen surface materials were collected for metagenomic DNA isolation on five sample occasions: arrival at the feedlot, 5 d posttreatment (dpt), and 27, 75, and 117 dpt. For each sample occasion, fecal samples and pen surface material samples were pooled by pen. Quantitative polymerase chain reaction was used to determine the abundances of 10 ARGs. Due to low detection percentages (%D) and quantification percentages (%Q), the abundances of five ARGs were not analyzed: aac(6')-Ie-aph(2'') (%D = 43%, %Q = 4%), blaCMY-2 (%D = 41%, %Q = 0%), blaCTX-M (%D = 0%, %Q = 0%), blaKPC-2 (%D = 21%, %Q = 16%), and mecA (%D = 4%, %Q = 0%). The %D and %Q for the ARGs aadA1, erm(B), tet(A), tet(B), and tet(M) were ≥98% and ≥90%, respectively. The abundances of aadA1, erm(B), tet(A), tet(B), and tet(M) resistance genes did not differ (p > 0.05) between the CTC and control groups at any sampling time for feces or pen surface material. Although only 10 ARGs were examined in this study, the results suggest that a single 5-d in-feed CTC prophylaxis of beef cattle to prevent BRD has a negligible impact on the abundances of ARGs.


Assuntos
Ração Animal , Antibacterianos/farmacologia , Doenças dos Bovinos/prevenção & controle , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana/genética , Aditivos Alimentares/farmacologia , Animais , Antibioticoprofilaxia , Bovinos , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Reação em Cadeia da Polimerase , Carne Vermelha/análise
5.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887421

RESUMO

The specific antimicrobial resistance (AMR) decreases that can be expected from reducing antimicrobial (AM) use in U.S. beef production have not been defined. To address this data gap, feces were recovered from 36 lots of "raised without antibiotics" (RWA) and 36 lots of "conventional" (CONV) beef cattle. Samples (n = 719) were collected during harvest and distributed over a year. AMR was assessed by (i) the culture of six AM-resistant bacteria (ARB), (ii) quantitative PCR (qPCR) for 10 AMR genes (ARGs), (iii) a qPCR array of 84 ARGs, and (iv) metagenomic sequencing. Generally, AMR levels were similar, but some were higher in CONV beef cattle. The prevalence of third-generation cephalosporin-resistant (3GCr) Escherichia coli was marginally different between production systems (CONV, 47.5%; RWA, 34.8%; P = 0.04), but the seasonal effect (summer, 92.8%; winter, 48.3%; P < 0.01) was greater. Erythromycin-resistant (ERYr) Enterococcus sp. concentrations significantly differed between production systems (CONV, 1.91 log10 CFU/g; RWA, 0.73 log10 CFU/g; P < 0.01). Levels of aadA1, ant(6)-I, bla ACI, erm(A), erm(B), erm(C), erm(F), erm(Q), tet(A), tet(B), tet(M), and tet(X) ARGs were higher (P < 0.05) in the CONV system. Aggregate abundances of all 43 ARGs detected by metagenomic sequencing and the aggregate abundances of ARGs in the aminoglycoside, ß-lactam, macrolide-lincosamide-streptogramin B (MLS), and tetracycline AM classes did not differ (log2 fold change < 1.0) between CONV and RWA systems. These results suggest that further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance.IMPORTANCE The majority of antimicrobial (AM) use in the United States is for food-animal production, leading to concerns that typical AM use patterns during "conventional" (CONV) beef cattle production in the United States contribute broadly to antimicrobial resistance (AMR) occurrence. In the present study, levels of AMR were generally similar between CONV and "raised without antibiotics" (RWA) cattle. Only a limited number of modest AMR increases was observed in CONV cattle, primarily involving macrolide-lincosamide-streptogramin B (MLS) and tetracycline resistance. Macrolides (tylosin) and tetracyclines (chlortetracycline) are administered in-feed for relatively long durations to reduce liver abscesses. To ensure judicious AM use, the animal health, economic, and AMR impacts of shorter duration in-feed administration of these AMs should be examined. However, given the modest AMR reductions observed, further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance.

6.
Foodborne Pathog Dis ; 14(12): 687-695, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035101

RESUMO

In the beef industry, product contamination by Salmonella enterica is a serious public health concern, which may result in human infection and cause significant financial loss due to product recalls. Currently, the precise mechanism and pathogen source responsible for Salmonella contamination in commercial establishments are not well understood. We characterized 89 S. enterica strains isolated from beef trim with respect to their biofilm-forming ability, antimicrobial resistance, and biofilm cell survival/recovery growth after sanitizer exposure. A total of 28 Salmonella serovars was identified within these strains. The most common serovars identified were Anatum, Dublin, Montevideo, and Typhimurium, with these accounting for nearly half of the total strains. The vast majority (86%) of the strains was able to develop strong biofilms, and the biofilm-forming ability was highly strain dependent and related to cell surface expression of extracellular polymeric structures. These strains also demonstrated strong tolerance to quaternary ammonium chloride (QAC) and chlorine dioxide (ClO2), but were more sensitive to chlorine treatment. Sanitizer tolerance and bacterial postsanitization recovery growth were closely associated with strains' biofilm-forming ability. Thirty percent of the examined strains were found resistant to multiple antimicrobial agents and the resistance phenotypes were serovar associated, but not related to strains' biofilm-forming ability. Pulsed-field gel electrophoresis analysis tended to group strains by serovar rather than by biofilm-forming ability. Collectively, these data indicate that the strong biofilm formers of certain S. enterica strains/serovars possess significant potential for causing meat product contamination in meat processing environment.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Farmacorresistência Bacteriana Múltipla , Carne Vermelha/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Cloro/farmacologia , Compostos Clorados/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos , Manipulação de Alimentos , Microbiologia de Alimentos , Técnicas de Genotipagem , Óxidos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Salmonella enterica/efeitos dos fármacos
7.
Appl Environ Microbiol ; 82(24): 7197-7204, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736789

RESUMO

Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli and third-generation cephalosporin-resistant (3GCr) E. coli We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal health, TETr E. coli, and 3GCr E. coli A control group of cattle (n = 150) received no CTC, while a CTC group (n = 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimicrobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal swab and pen surface occurrences of generic E. coli (isolated on media that did not contain antimicrobials of interest and were not isolated based on any specific resistance), TETr E. coli, and 3GCr E. coli were determined on five sampling occasions: arrival at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETr E. coli concentrations were higher for the CTC group than the control group (P < 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETr E. coli concentrations did not differ between groups. 3GCr E. coli occurrences did not differ between control and CTC groups on any sampling occasion. For both groups, generic, TETr, and 3GCr E. coli occurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC contributed more significantly to antimicrobial-resistant E. coli occurrence. IMPORTANCE: The occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock production to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Administration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistant E. coli.


Assuntos
Antibacterianos/farmacologia , Doenças dos Bovinos/prevenção & controle , Clortetraciclina/farmacologia , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Ração Animal/análise , Animais , Antibacterianos/metabolismo , Antibioticoprofilaxia , Bovinos , Doenças dos Bovinos/microbiologia , Clortetraciclina/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Aditivos Alimentares/metabolismo , Testes de Sensibilidade Microbiana
8.
Appl Environ Microbiol ; 81(2): 713-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398858

RESUMO

Specific concerns have been raised that third-generation cephalosporin-resistant (3GC(r)) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COT(r)) E. coli, 3GC(r) Salmonella enterica, and nalidixic acid-resistant (NAL(r)) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GC(r) Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NAL(r) S. enterica was detected on only one hide. 3GC(r) E. coli and COT(r) E. coli were detected on 100.0% of hides during processing. Concentrations of 3GC(r) E. coli and COT(r) E. coli on hides were correlated with pre-evisceration carcass contamination. 3GC(r) E. coli and COT(r) E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COT(r) E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Carne/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Cadáver , Bovinos , Microbiologia Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Manipulação de Alimentos , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Fatores de Virulência/genética
9.
Front Microbiol ; 15: 1307563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410382

RESUMO

There is an increasing awareness in the field of Salmonella epidemiology that focusing control efforts on those serotypes which cause severe human health outcomes, as opposed to broadly targeting all Salmonella, will likely lead to the greatest advances in decreasing the incidence of salmonellosis. Yet, little guidance exists to support validated, scientific selection of target serotypes. The goal of this perspective is to develop an approach to identifying serotypes of greater concern and present a case study using meat- and poultry-attributed outbreaks to examine challenges in developing a standardized framework for defining target serotypes.

10.
Sci Rep ; 14(1): 13257, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858528

RESUMO

Salmonella enterica and Escherichia coli are major food-borne human pathogens, and their genomes are routinely sequenced for clinical surveillance. Computational pipelines designed for analyzing pathogen genomes should both utilize the most current information from annotation databases and increase the coverage of these databases over time. We report the development of the GEA pipeline to analyze large batches of E. coli and S. enterica genomes. The GEA pipeline takes as input paired Illumina raw reads files which are then assembled followed by annotation. Alternatively, assemblies can be provided as input and directly annotated. The pipeline provides predictive genome annotations for E. coli and S. enterica with a focus on the Center for Genomic Epidemiology tools. Annotation results are provided as a tab delimited text file. The GEA pipeline is designed for large-scale E. coli and S. enterica genome assembly and characterization using the Center for Genomic Epidemiology command-line tools and high-performance computing. Large scale annotation is demonstrated by an analysis of more than 14,000 Salmonella genome assemblies. Testing the GEA pipeline on E. coli raw reads demonstrates reproducibility across multiple compute environments and computational usage is optimized on high performance computers.


Assuntos
Escherichia coli , Genoma Bacteriano , Salmonella enterica , Escherichia coli/genética , Salmonella enterica/genética , Software , Biologia Computacional/métodos , Anotação de Sequência Molecular , Genômica/métodos , Salmonella/genética , Humanos
11.
J Food Prot ; 87(6): 100288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697484

RESUMO

Escherichia coli commonly found in the gastrointestinal tracts of food animals include Shiga toxin-producing E. coli (STEC, stx+, eae-), Enterohemorrhagic E. coli (EHEC, stx+, eae+), Enteropathogenic E. coli (EPEC, stx-, eae+), and "nondiarrheagenic" E. coli (NDEC, stx-, eae-). EHEC, EPEC, and STEC are associated with foodborne disease outbreaks. During meat processing, disinfectants are employed to control various bacteria, including human pathogens. Concerns exist that E. coli resistant to antibiotics are less susceptible to disinfectants used during meat processing. Since EHEC, EPEC, and STEC with reduced susceptibility to disinfectants are potential public health risks, the goal of this study was to evaluate the association of antibiotic resistant (ABR) E. coli with increased tolerance to 4% lactic acid (LA) and 150 ppm quaternary ammonium compounds (QACs). A pool of 3,367 E. coli isolated from beef cattle, veal calves, swine, and sheep at various processing stages was screened to identify ABR E. coli. Resistance to ≥1 of the six antibiotics examined was identified in 27.9%, 36.1%, 54.5%, and 28.7% among the NDEC (n = 579), EHEC (n = 693), EPEC (n = 787), and STEC (n = 1308) isolates evaluated, respectively. Disinfectant tolerance did not differ (P > 0.05) between ABR and antibiotic susceptible EHEC isolates. Comparable frequencies (P > 0.05) of biofilm formation or congo red binding were observed between ABR and antibiotic susceptible strains of E. coli. Understanding the frequencies of ABR and disinfectant tolerance among E. coli present in food-animal is a critically important component of meat safety.


Assuntos
Antibacterianos , Desinfetantes , Escherichia coli , Carne Vermelha , Desinfetantes/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Carne Vermelha/microbiologia , Humanos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Bovinos , Carne/microbiologia , Contaminação de Alimentos/análise
12.
Appl Environ Microbiol ; 79(7): 2273-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354706

RESUMO

In the United States, the blaCMY-2 gene contained within incompatibility type A/C (IncA/C) plasmids is frequently identified in extended-spectrum-cephalosporin-resistant (ESC(r)) Escherichia coli strains from both human and cattle sources. Concerns have been raised that therapeutic use of ceftiofur in cattle may increase the prevalence of ESC(r) E. coli. We report that herd ESC(r) E. coli fecal and hide prevalences throughout the residency of cattle at a feedlot, including during the period of greatest ceftiofur use at the feedlot, were either not significantly different (P ≥ 0.05) or significantly less (P < 0.05) than the respective prevalences at arrival. Longitudinal sampling of cattle treated with ceftiofur demonstrated that once the transient increase of ESC(r) E. coli shedding that follows ceftiofur injection abated, ceftiofur-injected cattle were no more likely than untreated members of the same herd to shed ESC(r) E. coli. Pulsed-field gel electrophoresis (PFGE) genotyping, antibiotic resistance phenotyping, screening for presence of the blaCMY-2 gene, and plasmid replicon typing were performed on 312 ESC(r) E. coli isolates obtained during six sampling periods spanning the 10-month residence of cattle at the feedlot. The identification of only 26 unique PFGE genotypes, 12 of which were isolated during multiple sampling periods, suggests that clonal expansion of feedlot-adapted blaCMY-2 E. coli strains contributed more to the persistence of blaCMY-2 than horizontal transfer of IncA/C plasmids between E. coli strains at this feedlot. We conclude that therapeutic use of ceftiofur at this cattle feedlot did not significantly increase the herd prevalence of ESC(r) E. coli.


Assuntos
Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Pele/microbiologia , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , Animais , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Portador Sadio/veterinária , Bovinos , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Epidemiologia Molecular , Tipagem Molecular , Prevalência , beta-Lactamases/genética
13.
Appl Environ Microbiol ; 79(14): 4294-303, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645203

RESUMO

Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 10(4) CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.


Assuntos
Derrame de Bactérias , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/classificação , Escherichia coli O157/genética , Animais , Tipagem de Bacteriófagos/veterinária , Bacteriófagos/genética , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Contagem de Colônia Microbiana/veterinária , Eletroforese em Gel de Campo Pulsado/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Técnicas de Genotipagem/veterinária , Análise Multivariada , Filogenia , Polimorfismo de Nucleotídeo Único , Prevalência , Estados Unidos/epidemiologia
14.
Food Microbiol ; 33(2): 205-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23200653

RESUMO

Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety assurance. The Biocontrol GDS(®) and DuPont Qualicon BAX(®)-RT rapid detection systems are two commercial tests based on real-time PCR amplification with potential applications for quantification of specific E. coli O157:H7 gene targets in enriched meat samples. However, there are arguments surrounding the use of these tests to predict pre-enrichment concentrations of E. coli O157:H7, as well as arguments pertaining to the influence of non-viable cells causing false positive results. The present study attempts to illustrate the effects of different bacterial physiologic states and the presence of non-viable cells on the ability of these systems to accurately measure contamination levels of E. coli O157:H7 in ground beef. While the PCR threshold cycle (C(T)) values of these assays showed a direct correlation with the number of bacteria present in pure cultures, this was not the case for ground beef samples spiked with various levels of injured or healthy cells. Furthermore, comparison of post-enrichment cell densities of bacteria did not correlate with injured or healthy cell numbers inoculated before enrichment process. Ground beef samples spiked with injured or healthy cells at different doses could not be distinguished by C(T) values from either assay. In addition, the contribution of nonviable cells in generating positive real-time PCR signals was investigated using both assays on pre-enriched and post-enriched beef samples, but only if inoculated at levels of 10(6) cells/sample or higher, which are levels not typically seen in ground beef.


Assuntos
Escherichia coli O157/isolamento & purificação , Escherichia coli O157/fisiologia , Contaminação de Alimentos/análise , Carne/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Bovinos , Escherichia coli O157/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Contaminação de Alimentos/economia , Carne/economia , Sensibilidade e Especificidade
15.
Foodborne Pathog Dis ; 10(4): 368-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23566273

RESUMO

Bovine peripheral lymph nodes (LNs), including subiliac LNs, have been identified as a potential source of human exposure to Salmonella enterica, when adipose trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in peripheral LNs of feedlot and cull cattle, a cross-sectional study was undertaken in which 3327 subiliac LNs were collected from cattle at harvest in seven plants, located in three geographically distinct regions of the United States. Samples were collected in three seasons: Fall 2010, Winter/Spring 2011, and Summer/Fall 2011. A convenience sample of 76 LNs per day, 2 days per season (approximately 1 month apart), was collected per plant, from carcasses held in the cooler for no less than 24 h. Every 10(th) carcass half on a rail was sampled, in an attempt to avoid oversampling any single cohort of cattle. Median point estimates of S. enterica contamination were generally low (1.3%); however, median Salmonella prevalence was found to be greater in subiliac LNs of feedlot cattle (11.8%) compared to those of cull cattle (0.65%). Enumeration analysis of a subset of 618 feedlot cattle LNs showed that 67% of those harboring S. enterica (97 of 144) did so at concentrations ranging from <0.1 to 1.8 log10 CFU/g, while 33% carried a higher burden of S. enterica, with levels ranging from 1.9 to >3.8 log10 CFU/g. Serotyping of S. enterica isolated identified 24 serotypes, with the majority being Montevideo (44.0%) and Anatum (24.8%). Antimicrobial susceptibility phenotypes were determined for all isolates, and the majority (86.1%) were pansusceptible; however, multidrug-resistant isolates (8.3%) were also occasionally observed. As Salmonella contained within LNs are protected from carcass interventions, research is needed to define opportunities for mitigating the risk of Salmonella contamination in LNs of apparently healthy cattle.


Assuntos
Portador Sadio , Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Linfonodos/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Estudos Transversais , Testes de Sensibilidade Microbiana , Fenótipo , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Estações do Ano , Sorotipagem , Estados Unidos
16.
J Food Prot ; 86(1): 100031, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916589

RESUMO

Understanding the dynamics of stress-resistant Escherichia coli (E. coli) across the meat production and processing continuum is important for tracking sources of such microbes and devising effective modes of control. The Locus of Heat Resistance (LHR) is a ∼14-19 Kb genetic element imparting extreme heat resistance (XHR) in Enterobacteriaceae. It has been hypothesized that thermal and antimicrobial interventions applied during meat processing may select for LHR+E. coli. Thus, our goal was to study the prevalence and molecular biology of LHR+E. coli among lots of beef cattle (n = 3) from production through processing. Two hundred thirty-two generic E. coli isolated from the same animals through seven stages of the beef processing continuum (cattle in feedyards to packaged strip loins) were examined. LHR+E. coli were rare (0.6%; 1 of 180) among the early stages of the beef continuum (feces and hides at feedlot, feces and hides at harvest, and preevisceration carcasses), whereas the prevalence of LHR+E. coli on final carcasses and strip loins was remarkably higher. Half (14 of 28) of the final carcass E. coli possessed the LHR, while 79.2% (19 of 24) of the strip loin E. coli did. Eighty-five percent (29 of 34) of the LHR+E. coli presented with the XHR phenotype. The selection or enrichment of LHR+E. coli from harvest steps to the final products appeared unlikely as the LHR+E. coli isolates were effectively controlled by antimicrobial interventions typically used during beef processing. Further, whole-genome sequencing of the isolates suggested LHR+E. coli are persisting in the chilled processing environment and that horizontal LHR transfer among E. coli isolates may take place.


Assuntos
Escherichia coli , Temperatura Alta , Bovinos , Animais , Carne
17.
Appl Environ Microbiol ; 78(17): 6341-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706056

RESUMO

Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety.


Assuntos
Biofilmes/crescimento & desenvolvimento , Sorotipagem , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/fisiologia , Microbiologia de Alimentos
18.
Appl Environ Microbiol ; 78(8): 2716-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327585

RESUMO

The objective of this study was to characterize Salmonella enterica contamination on carcasses in two large U.S. commercial pork processing plants. The carcasses were sampled at three points, before scalding (prescald), after dehairing/polishing but before evisceration (preevisceration), and after chilling (chilled final). The overall prevalences of Salmonella on carcasses at these three sampling points, prescald, preevisceration, and after chilling, were 91.2%, 19.1%, and 3.7%, respectively. At one of the two plants, the prevalence of Salmonella was significantly higher (P < 0.01) for each of the carcass sampling points. The prevalences of carcasses with enumerable Salmonella at prescald, preevisceration, and after chilling were 37.7%, 4.8%, and 0.6%, respectively. A total of 294 prescald carcasses had Salmonella loads of >1.9 log CFU/100 cm(2), but these carcasses were not equally distributed between the two plants, as 234 occurred at the plant with higher Salmonella prevalences. Forty-one serotypes were identified on prescald carcasses with Salmonella enterica serotypes Derby, Typhimurium, and Anatum predominating. S. enterica serotypes Typhimurium and London were the most common of the 24 serotypes isolated from preevisceration carcasses. The Salmonella serotypes Johannesburg and Typhimurium were the most frequently isolated serotypes of the 9 serotypes identified from chilled final carcasses. Antimicrobial susceptibility was determined for selected isolates from each carcass sampling point. Multiple drug resistance (MDR), defined as resistance to three or more classes of antimicrobial agents, was identified for 71.2%, 47.8%, and 77.5% of the tested isolates from prescald, preevisceration, and chilled final carcasses, respectively. The results of this study indicate that the interventions used by pork processing plants greatly reduce the prevalence of Salmonella on carcasses, but MDR Salmonella was isolated from 3.2% of the final carcasses sampled.


Assuntos
Farmacorresistência Bacteriana , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Suínos/microbiologia , Matadouros , Animais , Carga Bacteriana , Manipulação de Alimentos , Fenótipo , Prevalência , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Sorotipagem , Estados Unidos/epidemiologia
20.
Sci Rep ; 12(1): 5305, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351927

RESUMO

Certain strains of Escherichia coli possess and express the toxin colibactin (Clb) which induces host mutations identical to the signature mutations of colorectal cancer (CRC) that lead to tumorigenic lesions. Since cattle are a known reservoir of several Enterobacteriaceae including E. coli, this study screened for clb amongst E. coli isolated from colons of cattle-at-harvest (entering beef processing facility; n = 1430), across the beef processing continuum (feedlot to finished subprimal beef; n = 232), and in ground beef (n = 1074). Results demonstrated that clb+ E. coli were present in cattle and beef. Prevalence of clb+ E. coli from colonic contents of cattle and ground beef was 18.3% and 5.5%, respectively. clb+ E. coli were found susceptible to commonly used meat processing interventions. Whole genome sequencing of 54 bovine and beef clb+ isolates showed clb occurred in diverse genetic backgrounds, most frequently in phylogroup B1 (70.4%), MLST 1079 (42.6%), and serogroup O49 (40.7%).


Assuntos
Infecções por Escherichia coli , Policetídeos , Animais , Bovinos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Tipagem de Sequências Multilocus , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA