Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 35(2): 143-61, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26657898

RESUMO

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.


Assuntos
Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Feminino , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
J Immunol ; 190(5): 1927-35, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359496

RESUMO

The activation kinetics of MAPK Erk are critical for T cell development and activation. In particular, sustained Erk signaling is required for T cell activation and effector functions, such as IL-2 production. Although Raf-1 triggers transient Erk activation, B-Raf is implicated in sustained Erk signaling after TCR stimulation. In this study, we show that B-Raf is dephosphorylated on its inhibitory serine 365 upon TCR triggering. However, it is unknown how B-Raf activation is coupled to the TCR. Using mass spectrometry, we identified protein kinase D-interacting substrate of 220 kDa (Kidins220)/ankyrin repeat-rich membrane spanning protein, mammalian target of rapamycin, Rictor, Dock2, and GM130 as novel B-Raf interaction partners. We focused on Kidins220, a protein that has been studied in neuronal cells and found that it associated with the pre-TCR, αßTCR, and γδTCR. Upon prolonged TCR stimulation, the Kidins220-TCR interaction was reduced, as demonstrated by immunoprecipitation and proximity ligation assays. We show that Kidins220 is required for TCR-induced sustained, but not transient, Erk activation. Consequently, induction of the immediate early gene products and transcription factors c-Fos and Erg-1 was blocked, and upregulation of the activation markers CD69, IL-2, and IFN-γ was reduced. Further, Kidins220 was required for optimal calcium signaling. In conclusion, we describe Kidins220 as a novel TCR-interacting protein that couples B-Raf to the TCR. Kidins220 is mandatory for sustained Erk signaling; thus, it is crucial for TCR-mediated T cell activation.


Assuntos
Ativação Linfocitária/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/genética , Linfócitos T/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Proteínas Ativadoras de GTPase , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Camundongos , Proteínas do Tecido Nervoso/imunologia , Cultura Primária de Células , Ligação Proteica , Proteínas Proto-Oncogênicas B-raf/imunologia , Proteína Companheira de mTOR Insensível à Rapamicina , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
3.
Oncotarget ; 9(13): 11322-11335, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541416

RESUMO

Fusion proteins combining hexavalent TRAIL with antibody fragments allow for a targeted delivery and efficient apoptosis induction in tumor cells. Here, we analyzed scFv-Fc-scTRAIL molecules directed against EGFR, HER2, HER3, and EpCAM as well as an untargeted Fc-scTRAIL fusion protein for their potentials to induce cell death both in vitro and in a xenograft tumor model in vivo. The scFv-Fc-scTRAIL fusion protein directed against EGFR as well as the fusion protein directed against EpCAM showed targeting effects on the two tested colorectal carcinoma cell lines Colo205 and HCT116, while a fusion protein targeting HER3 was more effective than untargeted Fc-scTRAIL only on Colo205 cells. Interestingly, another anti-HER3 scFv-Fc-scTRAIL fusion protein exhibiting approximately 10-fold weaker antigen binding as well as the HER2-directed molecule were unable to increase cytotoxicity compared to Fc-scTRAIL. A comparison of EC50 values of cell death induction and antigen binding supports the assumption that high affinity antigen binding is one of the requirements for in vitro targeting effects. Furthermore, a minimal number of expressed target antigens might be required for increased cytotoxicity of targeted compared to non-targeted molecules. In a Colo205 s.c. xenograft tumor model, strongest antitumor activity was observed for the anti-HER3 scFv-Fc-scTRAIL fusion protein based on antibody 3-43, with complete tumor remissions after six twice-weekly injections. Surprisingly, a similar in vivo activity was also observed for untargeted Fc-scTRAIL in this tumor model, indicating that additional factors contribute to the potent efficacy of targeted as well as untargeted hexavalent Fc-scTRAIL fusion proteins in vivo.

4.
MAbs ; 9(5): 831-843, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28421882

RESUMO

Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3-43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3-43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3-43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.


Assuntos
Anticorpos Antineoplásicos , Epitopos/imunologia , Imunoglobulina G , Neoplasias Experimentais/tratamento farmacológico , Receptor ErbB-3/imunologia , Transdução de Sinais/efeitos dos fármacos , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Células MCF-7 , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neuregulina-1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncotarget ; 7(33): 53526-53539, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27447549

RESUMO

Here we study the effects of inducible oncogenic K-Ras (G12V) expression on the polarized morphogenesis of colonic epithelial cells. We provide evidence that the autocrine production of heregulins, ligands for the ErbB3 receptor tyrosine kinase, is responsible for the hyperproliferation and aberrant 3D morphogenesis upon oncogenic K-Ras expression. This is in line with results obtained in primary intestinal organoid cultures, in which exogenous heregulin is shown to interfere with normal tissue architecture. Importantly, ErbB3 inhibition and heregulin gene silencing rescued K-RasG12V-induced features of cell transformation. Together with the increased ErbB3 positivity detected in human high-grade primary colorectal cancers, our findings provide support for an autocrine signaling loop engaged by oncogenic K-Ras involving ErbB3 that contributes to the dedifferentiation of the intestinal epithelium during tumor initiation and progression.


Assuntos
Comunicação Autócrina/fisiologia , Transformação Celular Neoplásica/metabolismo , Mucosa Intestinal/patologia , Receptor ErbB-3/metabolismo , Proteínas ras/metabolismo , Desdiferenciação Celular/fisiologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Proliferação de Células , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mucosa Intestinal/metabolismo , Morfogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA