Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Vis ; 26: 797-817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456300

RESUMO

Purpose: The expression of aquaporin-8 (AQP8), which plays a crucial role in the maintenance of the cellular fluid and electrolyte balance, was shown to be increased in RPE cells under hyperosmotic conditions. The aim of the present study was to investigate the mechanisms of hyperosmotic AQP8 gene expression and the localization of AQP8 in cultured human RPE cells. Methods: Hyperosmolarity was produced with the addition of 100 mM NaCl or 200 mM sucrose. Hypoxia was induced by cell culture in a 0.2% O2 atmosphere or the addition of the hypoxia mimetic CoCl2. Oxidative stress was induced by the addition of H2O2. Gene expression was determined with real-time RT-PCR analysis. AQP8 protein localization and secretion of VEGF were evaluated with immunocytochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results: Immunocytochemical and western blot data suggest that the AQP8 protein is mainly located in the mitochondria. Extracellular hyperosmolarity, hypoxia, and oxidative stress induced increases in AQP8 gene expression. Hyperosmotic AQP8 gene expression was reduced by inhibitors of the p38 MAPK and PI3K signal transduction pathways, and by JAK2 and PLA2 inhibitors, and was in part mediated by the transcriptional activity of CREB. Hyperosmotic AQP8 gene expression was also reduced by autocrine/paracrine interleukin-1 signaling, the sulfonylureas glibenclamide and glipizide, which are known inhibitors of KATP channel activation, and a pannexin-blocking peptide. The KATP channel opener pinacidil increased the expression of AQP8 under control conditions. The cells contained Kir6.1 and SUR2B gene transcripts and displayed Kir6.1 immunoreactivity. siRNA-mediated knockdown of AQP8 caused increases in hypoxic VEGF gene expression and secretion and decreased cell viability under control, hyperosmotic, and hypoxic conditions. Conclusions: The data indicate that hyperosmotic expression of AQP8 in RPE cells is dependent on the activation of KATP channels. The data suggest that AQP8 activity decreases the hypoxic VEGF expression and improves the viability of RPE cells which may have impact for ischemic retinal diseases like diabetic retinopathy and age-related macular degeneration.


Assuntos
Aquaporinas/genética , Ativação do Canal Iônico , Canais KATP/metabolismo , Osmose , Epitélio Pigmentado da Retina/citologia , Aquaporinas/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Frações Subcelulares/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Technol Health Care ; 31(4): 1555-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334641

RESUMO

BACKGROUND: The clinical performance of medical devices is becoming increasingly important for the requirements of modern development processes and the associated regulations. However, the evidence for this performance can often only be obtained very late in the development process via clinical trials or studies. OBJECTIVE: The purpose of the presented work is to show that the simulation of bone-implant systems has advanced in various aspects, including cloud-based execution, Virtual Clinical Trials, and material modeling towards a point where and widespread utilization in healthcare for procedure planning and enhancing practices seems feasible. But this will only hold true if the virtual cohort data build from clinical Computer Tomography data are collected and analysed with care. METHODS: An overview of the principal steps necessary to perform Finite Element Method based structural mechanical simulations of bone-implant systems based on clinical imaging data is presented. Since these data form the baseline for virtual cohort construction, we present an enhancement method to make them more accurate and reliable. RESULTS: The findings of our work comprise the initial step towards a virtual cohort for the evaluation of proximal femur implants. In addition, results of our proposed enhancement methodology for clinical Computer Tomography data that demonstrate the necessity for the usage of multiple image reconstructions are presented. CONCLUSION: Simulation methodologies and pipelines nowadays are mature and have turnaround times that allow for a day-to-day use. However, small changes in the imaging and the preprocessing of data can have a significant impact on the obtaind results. Consequently, first steps towards virtual clinical trials, like collecting bone samples, are done, but the reliability of the input data remains subject to further research and development.


Assuntos
Fêmur , Processamento de Imagem Assistida por Computador , Humanos , Simulação por Computador , Análise de Elementos Finitos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA