Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Derm Venereol ; 100(17): adv00302, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33026094

RESUMO

Slowly depolarizing currents applied for one minute have been shown to activate C-nociceptors and provoke increasing pain in patients with neuropathy. This study examined the effect of transcutaneous slowly depolarizing currents on pruritus in patients with atopic dermatitis. C-nociceptor-specific electrical stimu-lation was applied to areas of eczema-affected and non-affected skin in 26 patients with atopic dermatitis. Single half-sine wave pulses (500 ms, 0.2-1 mA) induced itch in 9 patients in eczema-affected areas of the skin (numerical rating scale 5 ± 1), but pain in control skin (numerical rating scale 6 ± 1).Sinusoidal stimuli (4 Hz, 10 pulses, 0.025-0.4 mA) evoked itch in only 3 patients in eczema-affected areas of the skin but on delivering pulses for one minute (0.05-0.2 mA) 48% of the patients (n= 12) reported itch with numerical rating scale 4 ± 1 in areas of eczema-affected skin. The number of patients reporting itch in eczema-affected areas of the skin increased with longer stimulation (p < 0.005). These results demonstrate a reduced adaptation of peripheral C-fibres conveying itch in patients with atopic dermatitis. Sensitized spinal itch processing had been suggested before in atopic dermatitis patients, and this could be present also in our patients who therefore might benefit from centrally acting antipruritic therapy.


Assuntos
Dermatite Atópica , Eczema , Antipruriginosos , Dermatite Atópica/diagnóstico , Humanos , Prurido/induzido quimicamente , Prurido/diagnóstico , Pele
2.
Ann Neurol ; 83(5): 945-957, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29659054

RESUMO

OBJECTIVE: Develop and validate a low-intensity sinusoidal electrical stimulation paradigm to preferentially activate C-fibers in human skin. METHODS: Sinusoidal transcutaneous stimulation (4Hz) was assessed psychophysically in healthy volunteers (n = 14) and neuropathic pain patients (n = 9). Pursuing laser Doppler imaging and single nociceptor recordings in vivo in humans (microneurography) and pigs confirmed the activation of "silent" C-nociceptors. Synchronized C-fiber compound action potentials were evoked in isolated human nerve fascicles in vitro. Live cell imaging of L4 dorsal root ganglia in anesthetized mice verified the recruitment of small-diameter neurons during transcutaneous 4-Hz stimulation of the hindpaw (0.4mA). RESULTS: Transcutaneous sinusoidal current (0.05-0.4mA, 4Hz) activated "polymodal" C-fibers (50% at ∼0.03mA) and "silent" nociceptors (50% at ∼0.04mA), intensities substantially lower than that required with transcutaneous 1-ms rectangular pulses ("polymodal" ∼3mA, "silent" ∼50mA). The stimulation induced delayed burning (nonpulsating) pain and a pronounced axon-reflex erythema, both indicative of C-nociceptor activation. Pain ratings to repetitive stimulation (1 minute, 4Hz) adapted in healthy volunteers by Numeric Rating Scale (NRS) -3 and nonpainful skin sites of neuropathic pain patients by NRS -0.5, whereas pain even increased in painful neuropathic skin by approximately NRS +2. INTERPRETATION: Sinusoidal electrical stimulation at 4Hz enables preferential activation of C-nociceptors in pig and human skin that accommodates during ongoing (1-minute) stimulation. Absence of such accommodation in neuropathic pain patients suggest axonal hyperexcitability that could be predictive of alterations in peripheral nociceptor encoding and offer a potential therapeutic entry point for topical analgesic treatment. Ann Neurol 2018;83:945-957.


Assuntos
Axônios/fisiologia , Neuralgia/fisiopatologia , Nociceptores/fisiologia , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Adulto , Animais , Dor Crônica/fisiopatologia , Estimulação Elétrica/métodos , Gânglios Espinais/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Limiar da Dor/fisiologia , Pele/inervação
3.
Eur J Pain ; 25(2): 385-397, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064901

RESUMO

BACKGROUND: Intradermal injection of 1 µg nerve growth factor (NGF) causes sustained nociceptor sensitization. Slowly depolarizing electrical current preferentially activates C-nociceptors. METHODS: We explored the differential contribution of A-delta and C-nociceptors in NGF-sensitized skin using slowly depolarizing transcutaneous electrical current stimuli, CO2 laser heat, mechanical impact, and A-fibre compression block. In 14 healthy volunteers, pain rating was recorded on a numeric scale at days 1-14 after NGF treatment. Ratings during A-fibre conduction block were investigated at days 3 and 7 post-NGF. RESULTS: Pain ratings to electrical, CO2 heat and mechanical impact stimuli were enhanced (>30%, p < .0005, ANOVA) at NGF-injection sites. Axon reflex erythema evoked by electrical stimulation was also larger at NGF-injection sites (p < .02, ANOVA). Diminution of pain during continuous (1 min) sinusoidal current stimulation at 4 Hz was less pronounced after NGF (p < .05, ANOVA). Pain ratings to electrical sinusoidal and mechanical impact stimuli during A-fibre conduction block were significantly elevated at the NGF sites compared to NaCl-treated skin (p < .05, ANOVA). CONCLUSIONS: NGF-induced sensitization of human skin to electrical and mechanical stimuli is primarily driven by C-nociceptors with little contribution from A-delta fibres. Less-pronounced accommodation during ongoing sinusoidal stimulation suggests that NGF could facilitate axonal spike generation and conduction in primary afferent nociceptors in humans. Further studies using this sinusoidal electrical stimulation profile to investigate patients with chronic inflammatory pain may allow localized assessment of skin C-nociceptors and their putative excitability changes under pathologic conditions. SIGNIFICANCE: The application of novel slowly depolarizing electrical stimuli demonstrated a predominant C-nociceptor sensitization in NGF-treated skin. Increased pain ratings, larger axon reflex erythema and less accommodation of C-fibres to ongoing sinusoidal stimulation all indicated an enhanced nociceptor discharge after NGF. A-fibre conduction block had little effect on electrical and mechanical hyperalgesia skin in NGF-treated compared to NaCl-treated skin. This electrical stimulus profile may be applicable for patients with chronic inflammatory pain, allowing localized assessment of skin C-nociceptors and their putative excitability changes under pathologic conditions.


Assuntos
Fator de Crescimento Neural , Nociceptores , Humanos , Hiperalgesia , Fibras Nervosas Amielínicas , Limiar da Dor , Estimulação Física , Pele
4.
Eur J Pain ; 24(1): 122-133, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392805

RESUMO

BACKGROUND: Sinusoidal current stimuli preferentially activate C-nociceptors. Sodium channel isoforms NaV1.7 and NaV1.8 have been implicated in this. Sympathetic efferent neurons lack NaV1.8 and were explored upon sinusoidal activation. METHODS: Quantitative Sudomotor Axon Reflex Test (QSART) was performed in hairy (n = 16) and glabrous (n = 12) skin. Responses of sympathetic efferents (n = 10) and nociceptive afferents (n = 21) to sinusoidal current stimulation (4 Hz, 0.05-0.15 mA) were recorded in humans by microneurography (n = 11). Activation of sympathetic units upon supra-threshold sinusoidal currents (>0.8 mA) was recorded in pigs (n = 8). RESULTS: Sinusoidal stimuli (4 Hz, 0.4 mA) evoked weak sweat output (30 ml/h/m2 ) in hairy skin compared to rectangular pulses (4 Hz, 5 mA, 53 ml/h/m2 , p < .00001, ANOVA). No change in sweat output was recorded from glabrous skin to sine wave stimuli. Sinusoidal current at intensities ranging from 0.05 to 0.15 mA activated almost all (85%) nociceptors but only 40% of sympathetic units in human. Stimuli lead to a significantly lower activation in sympathetic versus nociceptive fibres as measured by activity-dependent slowing (ADS) of conduction (sympathetic efferents average ADS 100 ± 0.2% vs. C-nociceptors average ADS 113 ± 4%, p < .003, ANOVA). CONCLUSIONS: Sympathetic efferent neurons are less apt to convert slow depolarizations into action potentials as compared to nociceptors. Distinctive sodium channel expression patterns between nociceptors and sympathetic efferent neurons may account for this difference. Sinusoidal stimulation therefore provokes weak sweat responses and provides no alternative for clinical assessment of autonomic function. SIGNIFICANCE: C-nociceptors in hairy skin are activated by 4 Hz sinusoidal current stimulation at lower intensities than myelinated fibres. Sympathetic efferent neurons-albeit also unmyelinated-are less responsive to sinusoidal activation than nociceptors within the same skin area. Cutaneous sympathetic efferent neurons apparently are less apt than nociceptors to convert slow depolarization into action potentials.


Assuntos
Axônios , Nociceptores , Animais , Humanos , Neurônios Eferentes , Pele , Sudorese , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA