Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 29(4): 635-645, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894395

RESUMO

Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético , Sequenciamento Completo do Genoma/métodos , Linhagem Celular , Genoma Humano , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
2.
Nat Methods ; 13(7): 587-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27159086

RESUMO

Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.


Assuntos
Mapeamento Cromossômico/métodos , Genoma Humano , Genômica/métodos , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
3.
Genome Res ; 21(9): 1395-403, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685129

RESUMO

MicroRNAs (miRNAs) regulate numerous biological processes by base-pairing with target messenger RNAs (mRNAs), primarily through sites in 3' untranslated regions (UTRs), to direct the repression of these targets. Although miRNAs have sometimes been observed to target genes through sites in open reading frames (ORFs), large-scale studies have shown such targeting to be generally less effective than 3' UTR targeting. Here, we show that several miRNAs each target significant groups of genes through multiple sites within their coding regions. This ORF targeting, which mediates both predictable and effective repression, arises from highly repeated sequences containing miRNA target sites. We show that such sequence repeats largely arise through evolutionary duplications and occur particularly frequently within families of paralogous C(2)H(2) zinc-finger genes, suggesting the potential for their coordinated regulation. Examples of ORFs targeted by miR-181 include both the well-known tumor suppressor RB1 and RBAK, encoding a C(2)H(2) zinc-finger protein and transcriptional binding partner of RB1. Our results indicate a function for repeat-rich coding sequences in mediating post-transcriptional regulation and reveal circumstances in which miRNA-mediated repression through ORF sites can be reliably predicted.


Assuntos
MicroRNAs/metabolismo , Fases de Leitura Aberta/genética , RNA Mensageiro/química , Sequências Repetitivas de Ácido Nucleico , Motivos de Aminoácidos , Animais , Duplicação Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Dedos de Zinco/genética
4.
Proc Natl Acad Sci U S A ; 107(36): 15751-6, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20729470

RESUMO

MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate protein-coding genes posttranscriptionally. In animals, most known miRNA targeting occurs within the 3'UTR of mRNAs, but the extent of biologically relevant targeting in the ORF or 5'UTR of mRNAs remains unknown. Here, we develop an algorithm (MinoTar-miRNA ORF Targets) to identify conserved regulatory motifs within protein-coding regions and use it to estimate the number of preferentially conserved miRNA-target sites in ORFs. We show that, in Drosophila, preferentially conserved miRNA targeting in ORFs is as widespread as it is in 3'UTRs and that, while far less abundant, conserved targets in Drosophila 5'UTRs number in the hundreds. Using our algorithm, we predicted a set of high-confidence ORF targets and selected seven miRNA-target pairs from among these for experimental validation. We observed down-regulation by the miRNA in five out of seven cases, indicating our approach can recover functional sites with high confidence. Additionally, we observed additive targeting by multiple sites within a single ORF. Altogether, our results demonstrate that the scale of biologically important miRNA targeting in ORFs is extensive and that computational tools such as ours can aid in the identification of such targets. Further evidence suggests that our results extend to mammals, but that the extent of ORF and 5'UTR targeting relative to 3'UTR targeting may be greater in Drosophila.


Assuntos
Regiões 3' não Traduzidas , Drosophila/genética , MicroRNAs/genética , Algoritmos , Animais , Fases de Leitura Aberta
5.
Nat Commun ; 8: 14049, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091601

RESUMO

Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.


Assuntos
Leucócitos Mononucleares/metabolismo , Transcriptoma , Linhagem Celular , Feminino , Humanos , Leucócitos Mononucleares/química , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única
6.
Science ; 352(6284): 474-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26940866

RESUMO

Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.


Assuntos
Consanguinidade , Saúde , Histona-Lisina N-Metiltransferase/genética , Adulto , Análise Mutacional de DNA , Prescrições de Medicamentos , Exoma/genética , Feminino , Fertilidade , Técnicas de Inativação de Genes , Genes Letais , Loci Gênicos , Genoma Humano , Recombinação Homóloga , Homozigoto , Humanos , Masculino , Mães , Paquistão/etnologia , Fenótipo , Reino Unido
7.
Nat Biotechnol ; 34(3): 303-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26829319

RESUMO

Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.


Assuntos
Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , DNA/genética , Genoma Humano , Variação Estrutural do Genoma , Células Germinativas , Humanos , Conformação de Ácido Nucleico , Proteínas de Fusão Oncogênica/genética , Polimorfismo de Nucleotídeo Único
8.
Sci Data ; 3: 160025, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271295

RESUMO

The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.


Assuntos
Benchmarking , Genoma Humano , Exoma , Genômica , Humanos , Mutação INDEL
9.
PLoS One ; 10(5): e0116328, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000628

RESUMO

The importance of single-cell level data is increasingly appreciated, and significant advances in this direction have been made in recent years. Common to these technologies is the need to physically segregate individual cells into containers, such as wells or chambers of a micro-fluidics chip. High-throughput Single-Cell Labeling (Hi-SCL) in drops is a novel method that uses drop-based libraries of oligonucleotide barcodes to index individual cells in a population. The use of drops as containers, and a microfluidics platform to manipulate them en-masse, yields a highly scalable methodological framework. Once tagged, labeled molecules from different cells may be mixed without losing the cell-of-origin information. Here we demonstrate an application of the method for generating RNA-sequencing data for multiple individual cells within a population. Barcoded oligonucleotides are used to prime cDNA synthesis within drops. Barcoded cDNAs are then combined and subjected to second generation sequencing. The data are deconvoluted based on the barcodes, yielding single-cell mRNA expression data. In a proof-of-concept set of experiments we show that this method yields data comparable to other existing methods, but with unique potential for assaying very large numbers of cells.


Assuntos
Microfluídica/métodos , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA/métodos
10.
Nat Commun ; 6: 7279, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081261

RESUMO

Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.


Assuntos
Drosophila/genética , MicroRNAs/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Drosophila/metabolismo , Feminino , Biblioteca Gênica , Masculino , MicroRNAs/metabolismo , Músculos/metabolismo
11.
PLoS One ; 8(3): e56753, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520455

RESUMO

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.


Assuntos
Proteínas de Drosophila/metabolismo , Longevidade/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatos/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Hemócitos/metabolismo , Hemolinfa/metabolismo , Longevidade/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Túbulos de Malpighi/metabolismo , Fosfatos/farmacologia , Interferência de RNA
12.
Nat Biotechnol ; 31(11): 1023-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24142049

RESUMO

As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPE) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.


Assuntos
Análise Mutacional de DNA/métodos , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Variações do Número de Cópias de DNA , Frequência do Gene , Humanos , Neoplasias/diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Langmuir ; 22(10): 4547-51, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16649762

RESUMO

Particles adsorbed on the surface of a droplet form three-dimensional packings when the droplet evaporates. We study the final packings when the liquid droplet is attached to a solid substrate. In contrast to a droplet evaporating away from a substrate, here the final packings are highly dependent on both the number of particles and the contact angle between the droplet and the surface. Simple geometrical constraints quantitatively determine the parameter regions that particular packings can form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA