Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(9): e55821, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35861289

RESUMO

EMBO Reports welcomes 'Independent First Confirmation' studies for important findings. The editors will also consider well-developed null data on pivotal open questions in the biosciences, and studies that refute prominent published claims.


Assuntos
Editoração
2.
EMBO Rep ; 20(9): e48947, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31423692

RESUMO

An interview with Yossi Shiloh about the hunt for the gene that causes ataxia-telangiectasia, its clinical implications and about science in Israel.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos
5.
Stem Cells ; 27(1): 157-64, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18845762

RESUMO

Mesoangioblasts have been characterized as a population of vessel-associated stem cells able to differentiate into several mesodermal cell types, including skeletal muscle. Here, we report that the paired box transcription factor Pax3 plays a crucial role in directing mouse mesoangioblasts toward skeletal myogenesis in vitro and in vivo. Mesoangioblasts isolated from the aorta of Pax3 null embryos are severely impaired in skeletal muscle differentiation, whereas most other differentiation programs are not affected by the absence of Pax3. Moreover, Pax3(-/-) null mesoangioblasts failed to rescue the myopathic phenotype of the alpha-sarcoglycan mutant mouse. In contrast, mesoangioblasts from Pax3 gain of function, Pax3(PAX3-FKHR/+), mice display enhanced myogenesis in vitro and are more efficient in regenerating new muscle fibers in this model of muscular dystrophy. These data demonstrate that Pax3 is required for the differentiation of mesoangioblast stem cells into skeletal muscle, in keeping with its role in orchestrating entry into the myogenic program.


Assuntos
Vasos Sanguíneos/citologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Mesoderma/citologia , Músculo Esquelético/citologia , Fatores de Transcrição Box Pareados/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Vasos Sanguíneos/enzimologia , Osso e Ossos/citologia , Proliferação de Células , Forma Celular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos , Desenvolvimento Muscular , Distrofia Muscular Animal/metabolismo , Miócitos de Músculo Liso/citologia , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/deficiência , Fenótipo , Sarcoglicanas/biossíntese
6.
J Cell Sci ; 122(Pt 4): 481-8, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19193870

RESUMO

Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin--Myod, Myf5 and Mrf4--are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin-remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Muscular/fisiologia , Fatores de Regulação Miogênica/metabolismo , Miogenina/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Embrião não Mamífero/citologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/deficiência , Fator Regulador Miogênico 5/genética , Fatores de Regulação Miogênica/genética , Miogenina/genética , Fatores de Tempo , Ativação Transcricional , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Curr Protoc Stem Cell Biol ; Chapter 2: Unit 2B.1, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18785178

RESUMO

Mesoangioblasts are recently identified stem/progenitor cells, associated with small vessels of the mesoderm in mammals. Originally described in the mouse embryonic dorsal aorta, similar though not identical cells have been later identified and characterized from postnatal small vessels of skeletal muscle and heart (not described in this unit). They have in common the anatomical location, the expression of endothelial and/or pericyte markers, the ability to proliferate in culture, and the ability to undergo differentiation into various types of mesoderm cells upon proper culture conditions. Currently, the developmental origin of mesoangioblasts, their phenotypic heterogeneity, and the relationship with other mesoderm stem cells are not understood in detail and are the subject of active research. However, from a practical point of view, these cells have been successfully used in cell transplantation protocols that have yielded a significant rescue of structure and function in skeletal muscle of dystrophic mice and dogs. Since the corresponding human cells have been recently isolated and characterized, a clinical trial with these cells is planned in the near future. This unit provides detailed methods for isolation, culture, and characterization of mesoangioblasts.


Assuntos
Células-Tronco Adultas/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células-Tronco Embrionárias/citologia , Animais , Aorta/citologia , Aorta/embriologia , Diferenciação Celular , Cães , Humanos , Mesoderma/irrigação sanguínea , Mesoderma/citologia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/citologia , Mioblastos Esqueléticos/citologia , Pericitos/citologia
8.
Development ; 132(14): 3243-53, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983402

RESUMO

Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.


Assuntos
Ambystoma/fisiologia , Padronização Corporal/fisiologia , Cartilagem/fisiologia , Proliferação de Células , Regeneração/fisiologia , Cauda/fisiologia , Transativadores/fisiologia , Animais , Proteínas do Olho/metabolismo , Proteínas Hedgehog , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1 , Fator de Transcrição PAX6 , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados , Receptores Patched , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9 , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia , Fatores de Transcrição/metabolismo
9.
Dev Dyn ; 232(1): 162-70, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580632

RESUMO

Vertebrate regeneration is a fascinating but poorly understood biological phenomena. Urodele amphibians such as Ambystoma mexicanum (the axolotl) can functionally regenerate complex body structures such as the limb and tail, including the spinal cord, throughout life. So far, molecular studies on regeneration have been limited due to the paucity of tools for knocking-down gene and protein function. In this article, we quantitatively assessed the ability of morpholinos to specifically down-regulate protein expression in both cultured urodele cells and in vivo. We focused on the down-regulation of green fluorescent protein and two axolotl proteins, MSX1 and PAX7. Our data show that the expression of these proteins can be efficiently reduced by morpholinos. MSX1 has been hypothesized to be involved in muscle dedifferentiation based on experiments using cultured myotubes. Our studies in in vivo muscle fibers so far have shown no influence of overexpressing or down-regulating MSX1 on the dedifferentiation process.


Assuntos
Regulação para Baixo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Homeodomínio/biossíntese , Músculos/fisiologia , Cauda/fisiologia , Fatores de Transcrição/biossíntese , Ambystoma mexicanum/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Eletroporação , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Fator de Transcrição MSX1 , Camundongos , Dados de Sequência Molecular , Músculos/citologia , Fator de Transcrição PAX7 , Regeneração , Homologia de Sequência de Aminoácidos , Medula Espinal/embriologia , Medula Espinal/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA