Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Emerg Med ; 61: 111-116, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087464

RESUMO

BACKGROUND: The nasopharyngeal swab is the gold standard collection method for COVID-19, but is invasive and painful, subsequently resulting in poor patient acceptance. This investigation explores the process of developing and validating an alternative respiratory pathogen collection device that relies on a nasopharyngeal irrigation mechanic. The primary objective was to determine if sufficient pathological sampling can be achieved by mechanism of nasopharyngeal irrigation that is proportionate to the nasopharyngeal swab method. METHODS: The study device was designed using Shapr3D modeling software and fabricated on a fused deposition modeling printer. Fifteen participants were enrolled with each receiving a saline nasopharyngeal washing using the study device. Specimen adequacy was evaluated by two real-time reverse transcriptase polymerase chain reaction (PCR) testing methods to identify the presence of the human RNase P gene. Results were evaluated quantitatively through interpretation of the PCR cycle threshold (Ct). RESULTS: All 15 specimens tested positive for the presence of RNaseP, demonstrating specimen cellularity, adequate extraction of nucleic acids, and the absence of inhibitors to amplification. The mean Ct value was 29.5 (Applied Biosystems TaqPath RT-qPCR) and 30.7 (NECoV19). All participants felt the study device irrigation procedure was faster than the nasopharyngeal swab, with none experiencing any discomfort from the irrigation mechanism. CONCLUSION: The importance of early diagnostic testing and its role in countermeasures for communicable diseases such as COVID-19 is well established in the literature. Innovation to bolster our testing infrastructure is more important now than ever. This study was successful in developing and validating an alternative nasopharyngeal respiratory pathogen collection device that utilizes fluid debridement as its core mechanic. Data from this pilot study demonstrated the study device was successful in producing high-quality specimens for PCR testing. Feedback from the study participants was also in favor of the study device when compared to the nasopharyngeal swab.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , Pandemias , Projetos Piloto , COVID-19/diagnóstico , COVID-19/epidemiologia , Ribonuclease P/genética , SARS-CoV-2 , Nasofaringe , Manejo de Espécimes/métodos , Reação em Cadeia da Polimerase em Tempo Real
2.
Public Health Rep ; 138(4): 602-609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125740

RESUMO

OBJECTIVES: Public health laboratories (PHLs) are essential components of US Public Health Service operations. The health information technology that supports PHLs is central to effective and efficient laboratory operations and overall public health response to infectious disease management. This analysis presents key information on how the Nebraska Public Health Laboratory (NPHL) information technology system evolved to meet the demands of the COVID-19 pandemic. MATERIALS AND METHODS: COVID-19 presented numerous, unforeseen information technology system challenges. The most notable challenges requiring changes to NPHL software systems and capability were improving efficiency of the laboratory operation due to high-volume testing, responding daily to demands for timely data for analysis by partner systems, interfacing with multiple testing (equipment) platforms, and supporting community-based specimen collection programs. RESULTS: Improvements to the NPHL information technology system enabled NPHL to perform >121 000 SARS-CoV-2 polymerase chain reaction tests from March 2020 through January 2022 at a sustainable rate of 2000 SARS-CoV-2 tests per day, with no increase in laboratory staffing. Electronic reporting of 62 000 rapid antigen tests eliminated paper reporting and extended testing services throughout the state. Collection of COVID-19 symptom data before specimen collection enabled NPHL to make data-driven decisions to perform pool testing and conserve testing kits when supplies were low. PRACTICE IMPLICATIONS: NPHL information technology applications proved essential for managing health care provider workload, prioritizing the use of scarce testing supplies, and managing Nebraska's overall pandemic response. The NPHL experience provides useful examples of a highly capable information technology system and suggests areas for additional attention in the PHL environment, including a focus on end users, collaboration with various partners, and investment in information technology.


Assuntos
COVID-19 , Sistemas de Informação em Laboratório Clínico , Humanos , COVID-19/epidemiologia , Laboratórios , SARS-CoV-2 , Nebraska/epidemiologia , Saúde Pública , Pandemias , Emergências
3.
Protein Sci ; 30(9): 1983-1990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191362

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS-CoV-2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre-expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin-converting enzyme) receptor as well as antibodies in COVID-19 patient sera.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
JAMA Netw Open ; 4(9): e2126447, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550382

RESUMO

Importance: Scalable programs for school-based SARS-CoV-2 testing and surveillance are needed to guide in-person learning practices and inform risk assessments in kindergarten through 12th grade settings. Objectives: To characterize SARS-CoV-2 infections in staff and students in an urban public school setting and evaluate test-based strategies to support ongoing risk assessment and mitigation for kindergarten through 12th grade in-person learning. Design, Setting, and Participants: This pilot quality improvement program engaged 3 schools in Omaha, Nebraska, for weekly saliva polymerase chain reaction testing of staff and students participating in in-person learning over a 5-week period from November 9 to December 11, 2020. Wastewater, air, and surface samples were collected weekly and tested for SARS-CoV-2 RNA to evaluate surrogacy for case detection and interrogate transmission risk of in-building activities. Main Outcomes and Measures: SARS-CoV-2 detection in saliva and environmental samples and risk factors for SARS-CoV-2 infection. Results: A total of 2885 supervised, self-collected saliva samples were tested from 458 asymptomatic staff members (mean [SD] age, 42.9 [12.4] years; 303 women [66.2%]; 25 Black or African American [5.5%], 83 Hispanic [18.1%], 312 White [68.1%], and 35 other or not provided [7.6%]) and 315 students (mean age, 14.2 [0.7] years; 151 female students [48%]; 20 Black or African American [6.3%], 201 Hispanic [63.8%], 75 White [23.8%], and 19 other race or not provided [6.0%]). A total of 46 cases of SARS-CoV-2 (22 students and 24 staff members) were detected, representing an increase in cumulative case detection rates from 1.2% (12 of 1000) to 7.0% (70 of 1000) among students and from 2.1% (21 of 1000) to 5.3% (53 of 1000) among staff compared with conventional reporting mechanisms during the pilot period. SARS-CoV-2 RNA was detected in wastewater samples from all pilot schools as well as in air samples collected from 2 choir rooms. Sequencing of 21 viral genomes in saliva specimens demonstrated minimal clustering associated with 1 school. Geographical analysis of SARS-CoV-2 cases reported district-wide demonstrated higher community risk in zip codes proximal to the pilot schools. Conclusions and Relevance: In this study of staff and students in 3 urban public schools in Omaha, Nebraska, weekly screening of asymptomatic staff and students by saliva polymerase chain reaction testing was associated with increased SARS-CoV-2 case detection, exceeding infection rates reported at the county level. Experiences differed among schools, and virus sequencing and geographical analyses suggested a dynamic interplay of school-based and community-derived transmission risk. Collectively, these findings provide insight into the performance and community value of test-based SARS-CoV-2 screening and surveillance strategies in the kindergarten through 12th grade educational setting.


Assuntos
Teste para COVID-19/métodos , COVID-19/epidemiologia , Monitoramento Ambiental , Programas de Rastreamento , Avaliação de Programas e Projetos de Saúde , Instituições Acadêmicas , População Urbana , Adolescente , Adulto , Microbiologia do Ar , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nebraska , Pandemias , Projetos Piloto , Reação em Cadeia da Polimerase , Medição de Risco , SARS-CoV-2 , Saliva , Professores Escolares , Estudantes , Águas Residuárias/virologia
5.
bioRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32995771

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The initial interaction between Transmembrane Serine Protease 2 (TMPRSS2) primed SARS-CoV-2 spike (S) protein and host cell receptor angiotensin-converting enzyme 2 (ACE-2) is a pre-requisite step for this novel coronavirus pathogenesis. Here, we expressed a GFP-tagged SARS-CoV-2 S-Ectodomain in Tni insect cells. That contained sialic acid-enriched N- and O-glycans. Surface resonance plasmon (SPR) and Luminex assay showed that the purified S-Ectodomain binding to human ACE-2 and immunoreactivity with COVID-19 positive samples. We demonstrate that bromelain (isolated from pineapple stem and used as a dietary supplement) treatment diminishes the expression of ACE-2 and TMPRSS2 in VeroE6 cells and dramatically lowers the expression of S-Ectodomain. Importantly, bromelain treatment reduced the interaction between S-Ectodomain and VeroE6 cells. Most importantly, bromelain treatment significantly diminished the SARS-CoV-2 infection in VeroE6 cells. Altogether, our results suggest that bromelain or bromelain rich pineapple stem may be used as an antiviral against COVID-19. HIGHLIGHTS: Bromelain inhibits / cleaves the expression of ACE-2 and TMPRSS2Bromelain cleaves / degrades SARS-CoV-2 spike proteinBromelain inhibits S-Ectodomain binding and SARS-CoV-2 infection.

6.
J Clin Virol ; 129: 104538, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650276

RESUMO

We evaluated the performance of the BioFire® Respiratory Panel 2.1 (RP2.1) in the detection of SARS CoV-2 in comparison against three other SARS CoV-2 EUA assays. In these studies, the RP2.1 panel had 98 % positive percent agreement (48/49) and 100 % negative percent agreement (49/49). Since 30 % of nasopharyngeal swab specimens have a SARS CoV-2 Ct >30 and thus detection of virus in low titers is clinically relevant, a sample with a high titer was diluted and each 10 fold dilution was tested in triplicate and compared against 6 other EUA approved SARS CoV-2 assays. These data suggested that the BioFire® RP2.1 panel, along with four other SARS CoV-2 assays (Roche cobas, Cepheid Xpert Xpress, BioFire® Defense COVID19, and NECoV19), consistently detected viral RNA at the 10-7 dilution. Overall, these studies suggest that the BioFire® RP2.1 assay can be used to detect acute cases of SARS CoV2 in addition to patients with low viral titer later in disease presentation.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Viral/diagnóstico , RNA Viral/análise , COVID-19 , Teste para COVID-19 , Humanos , Nasofaringe/virologia , Pandemias , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA