Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mol Ecol ; 29(1): 172-183, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765501

RESUMO

Pleistocene climate fluctuations had profound influence on the biogeographical history of many biota. As large areas in high mountain ranges were covered by glaciers, biota were forced either to peripheral refugia (and possibly beyond to lowland refugia) or to interior refugia (nunataks). However, nunatak survival remains controversial as it relies solely on correlative genetic evidence. Here, we test hypotheses of glacial survival using two high alpine plant species (the insect-pollinated Pedicularis asplenifolia and wind-pollinated Carex fuliginosa) in the European Alps. Employing the iDDC (integrative Distributional, Demographic and Coalescent) approach, which couples species distribution modelling, spatial and temporal demographic simulation and Approximate Bayesian Computation, we explicitly test three hypotheses of glacial survival: (a) peripheral survival only, (b) nunatak survival only and (c) peripheral plus nunatak survival. In P. asplenifolia the peripheral plus nunatak survival hypothesis was supported by Bayes factors (BF> 100), whereas in C. fuliginosa the peripheral survival only hypothesis, although best supported, could not be unambiguously distinguished from the peripheral plus nunatak survival hypothesis (BF = 5.58). These results are consistent with current habitat preferences (P. asplenifolia extends to higher elevations) and the potential for genetic swamping (i.e., replacement of local genotypes via hybridization with immigrating genotypes [expected to be higher in the wind-pollinated C. fuliginosa]). Although the persistence of plants on nunataks during glacial periods has been debated and studied over decades, this is one of the first studies to explicitly test the hypothesis instead of solely using correlative evidence.


Assuntos
Carex (Planta)/genética , Pedicularis/genética , Teorema de Bayes , Carex (Planta)/fisiologia , Clima , Demografia , Ecologia , Ecossistema , Genótipo , Camada de Gelo , Pedicularis/fisiologia , Refúgio de Vida Selvagem
2.
Mol Phylogenet Evol ; 151: 106898, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585287

RESUMO

Phylogenetic relationships of and within non-photosynthetic parasitic lineages are notoriously poorly known, which negatively affects our understanding of parasitic plants. This is also the case for Cistanche (Orobanchaceae), an Old World genus with about two dozen species, whose relationships have not yet been addressed using molecular phylogenetic approaches. Here we infer phylogenetic relationships within the genus, employing a taxonomically and geographically broad sampling covering all previously distinguished infrageneric groups and most of the currently recognized species. A combined matrix of three plastid markers (trnL-trnF, including the trnL intron and the intergenic spacer (IGS), trnS-trnfM IGS and psbA-trnH IGS) and one nuclear marker (ITS) was analyzed using maximum parsimony, maximum likelihood and Bayesian inference. Cistanche falls into four well-supported and geographically differentiated clades: East Asian Clade, Northwest African Clade, Southwest Asian Clade and Widespread Clade. Of those, only the East Asian Clade corresponds to a previously recognized taxonomic section, whereas the others either contain members of two or three sections (Widespread Clade and Southwest Asian Clade, respectively) or have not been taxonomically recognized so far (Northwest African Clade). Whereas the Southwest Asian Clade exhibits strong phylogenetic structure among and partly within species (the East Asian Clade and the Northwest African Clade are monospecific), phylogenetic resolution within the Widespread Clade is often low and hampered by discrepancies between nuclear and plastid markers. Both molecular and morphological data indicate that species diversity in Cistanche is currently underestimated.


Assuntos
Cistanche/anatomia & histologia , Cistanche/classificação , Loci Gênicos , Fotossíntese , Filogenia , Teorema de Bayes , DNA de Plantas/genética , Íntrons/genética , Funções Verossimilhança , Análise de Sequência de DNA
3.
Syst Biol ; 67(6): 1010-1024, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562303

RESUMO

Allopolyploidy has played an important role in the evolution of the flowering plants. Genome mergers are often accompanied by significant and rapid alterations of genome size and structure via chromosomal rearrangements and altered dynamics of tandem and dispersed repetitive DNA families. Recent developments in sequencing technologies and bioinformatic methods allow for a comprehensive investigation of the repetitive component of plant genomes. Interpretation of evolutionary dynamics following allopolyploidization requires both the knowledge of parentage and the age of origin of an allopolyploid. Whereas parentage is typically inferred from cytogenetic and phylogenetic data, age inference is hampered by the reticulate nature of the phylogenetic relationships. Treating subgenomes of allopolyploids as if they belonged to different species (i.e., no recombination among subgenomes) and applying cross-bracing (i.e., putting a constraint on the age difference of nodes pertaining to the same event), we can infer the age of allopolyploids within the framework of the multispecies coalescent within BEAST2. Together with a comprehensive characterization of the repetitive DNA fraction using the RepeatExplorer pipeline, we apply the dating approach in a group of closely related allopolyploids and their progenitor species in the plant genus Melampodium (Asteraceae). We dated the origin of both the allotetraploid, Melampodium strigosum, and its two allohexaploid derivatives, Melampodium pringlei and Melampodium sericeum, which share both parentage and the direction of the cross, to the Pleistocene ($<$1.4 Ma). Thus, Pleistocene climatic fluctuations may have triggered formation of allopolyploids possibly in short intervals, contributing to difficulties in inferring the precise temporal order of allopolyploid species divergence of M. sericeum and M. pringlei. The relatively recent origin of the allopolyploids likely played a role in the near-absence of major changes in the repetitive fraction of the polyploids' genomes. The repetitive elements most affected by the postpolyploidization changes represented retrotransposons of the Ty1-copia lineage Maximus and, to a lesser extent, also Athila elements of Ty3-gypsy family.


Assuntos
Asteraceae/classificação , Asteraceae/genética , Evolução Molecular , Genoma de Planta/genética , DNA de Plantas/genética , Filogenia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética
4.
Proc Natl Acad Sci U S A ; 113(32): 9045-50, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450087

RESUMO

Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.


Assuntos
Evolução Molecular , Plantas/genética , Genomas de Plastídeos , Doenças Parasitárias/genética , Fotossíntese , Filogenia , Plastídeos/metabolismo , Seleção Genética
5.
J Plant Res ; 130(2): 273-280, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28004281

RESUMO

Molecular phylogenetic studies have greatly improved our understanding of phylogenetic relationships of non-photosynthetic parasitic broomrapes (Orobanche and related genera, Orobanchaceae), but a few genera have remained unstudied. One of those is Platypholis, whose sole species, Platypholis boninsimae, is restricted to the Bonin-Islands (Ogasawara Islands) about 1000 km southeast of Japan. Based on overall morphological similarity, Platypholis has been merged with Orobanche, but this hypothesis has never been tested with molecular data. Employing maximum likelihood and Bayesian analyses on a family-wide data set (two plastid markers, matK and rps2, and three nuclear markers, ITS, phyA and phyB) as well as on an ITS data set focusing on Orobanche s. str., it is shown that P. boninsimae Maxim. is phylogenetically closely linked to or even nested within Orobanche s. str. This position is supported both by morphological evidence and by the newly obtained chromosome number of 2n = 38, which is characteristic for the genus Orobanche s. str.


Assuntos
Cromossomos de Plantas , DNA Espaçador Ribossômico/genética , Genoma de Planta , Orobanchaceae/genética , Proteínas de Plantas/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Filogenia , Análise de Sequência de DNA
6.
Plant Cell ; 25(10): 3711-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24143802

RESUMO

Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.


Assuntos
Evolução Biológica , Deleção de Genes , Genoma de Cloroplastos , Genoma de Planta , Orobanchaceae/genética , Fotossíntese/genética , Composição de Bases , Teorema de Bayes , Hibridização Genômica Comparativa , Rearranjo Gênico , Genes Essenciais , Modelos Genéticos , Fases de Leitura Aberta , Orobanchaceae/fisiologia , Filogenia , Mapeamento Físico do Cromossomo , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Análise de Sequência de DNA
7.
Ann Bot ; 118(6): 1101-1111, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539600

RESUMO

BACKGROUND AND AIMS: The broomrapes, Orobanche sensu lato (Orobanchaceae), are common root parasites found across Eurasia, Africa and the Americas. All species native to the western hemisphere, recognized as Orobanche sections Gymnocaulis and Nothaphyllon, form a clade that has a centre of diversity in western North America, but also includes four disjunct species in central and southern South America. The wide ecological distribution coupled with moderate taxonomic diversity make this clade a valuable model system for studying the role, if any, of host-switching in driving the diversification of plant parasites. METHODS: Two spacer regions of ribosomal nuclear DNA (ITS + ETS), three plastid regions and one low-copy nuclear gene were sampled from 163 exemplars of Orobanche from across the native geographic range in order to infer a detailed phylogeny. Together with comprehensive data on the parasites' native host ranges, associations between phylogenetic lineages and host specificity are tested. KEY RESULTS: Within the two currently recognized species of O. sect. Gymnocaulis, seven strongly supported clades were found. While commonly sympatric, members of these clades each had unique host associations. Strong support for cryptic host-specific diversity was also found in sect. Nothaphyllon, while other taxonomic species were well supported. We also find strong evidence for multiple amphitropical dispersals from central North America into South America. CONCLUSIONS: Host-switching is an important driver of diversification in western hemisphere broomrapes, where host specificity has been grossly underestimated. More broadly, host specificity and host-switching probably play fundamental roles in the speciation of parasitic plants.


Assuntos
Orobanche/fisiologia , Biodiversidade , América Central , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Ecologia , América do Norte , Orobanche/genética , Filogenia , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
8.
Ann Bot ; 117(2): 269-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658487

RESUMO

BACKGROUND AND AIMS: Ecological differentiation is recognized as an important factor for polyploid speciation, but little is known regarding whether the ecological niches of cytotypes differ between areas of sympatry and areas where single cytotypes occur (i.e. niche displacement). METHODS: Ecological niches of four groups of Senecio carniolicus sensu lato (s.l.) (western and eastern diploid lineages, tetraploids and hexaploids) were characterized via Landolt indicator values of the accompanying vascular plant species and tested using multivariate and univariate statistics. KEY RESULTS: The four groups of S. carniolicus s.l. were ecologically differentiated mainly with respect to temperature, light and soil (humus content, nutrients, moisture variability). Niche breadths did not differ significantly. In areas of sympatry hexaploids shifted towards sites with higher temperature, less light and higher soil humus content as compared with homoploid sites, whereas diploids and tetraploids shifted in the opposite direction. In heteroploid sites of tetraploids and the western diploid lineage the latter shifted towards sites with lower humus content but higher aeration. CONCLUSIONS: Niche displacement can facilitate the formation of stable contact zones upon secondary contact of polyploids and their lower-ploid ancestors and/or lead to convergence of the cytotypes' niches after they have attained non-overlapping ranges. Niche displacement is essential for understanding ecological consequences of polyploidy.


Assuntos
Poliploidia , Senécio/fisiologia , Simpatria , Diploide , Ecossistema , Ecótipo , Europa (Continente) , Modelos Genéticos , Método de Monte Carlo , Senécio/genética
9.
Proc Biol Sci ; 281(1784): 20140075, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24759859

RESUMO

The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.


Assuntos
Biodiversidade , Evolução Biológica , Primulaceae/fisiologia , Proteínas de Cloroplastos/genética , Extinção Biológica , Flores/genética , Flores/fisiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Primulaceae/genética , Reprodução , Análise de Sequência de DNA
10.
Mol Ecol ; 23(11): 2861-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24811794

RESUMO

Due to strong spatial heterogeneity and limited Pleistocene glaciation, the Balkan Peninsula is a major European biodiversity hot spot. Surprisingly little, however, is known about patterns and processes of intraspecific diversification of its biota in general and of high-altitude species in particular. A well-suited system to test hypotheses with respect to various isolating factors acting at different geographic scales and to explore full-range phylogeographic patterns on the Balkan Peninsula is Edraianthus graminifolius (Campanulaceae), distributed in the western Balkan mountain systems, the southwestern Carpathians and the Apennine Peninsula. To this end, we used a dense population sampling and employed amplified fragment length polymorphism (AFLP) markers and plastid DNA sequences supplemented by ecological niche modelling. The strongest splits were inferred to separate southern and northern Balkan populations from the central ones, from where range extension occurred to the Carpathians and, in more recent times, once or twice to the Apennine Peninsula. The three genetic groups in the western Balkan Peninsula were remarkably congruent among molecular markers, suggesting that the barriers to gene flow acted over long time periods facilitating allopatric differentiation. Each main group of Balkan populations contained genetically and geographically distinct subgroups, which likely are the result of local refugia during warmer periods. Evidently, the topographically highly complex and during the Last Glacial Maximum only locally glaciated Balkan Peninsula is a hot spot of species richness and endemism as well as a sanctuary of intraspecific genetic diversity, even if the underlying causes remain insufficiently understood.


Assuntos
Campanulaceae/genética , Variação Genética , Modelos Genéticos , Dispersão Vegetal , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Península Balcânica , Teorema de Bayes , Biodiversidade , DNA de Cloroplastos/genética , DNA de Plantas/genética , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
11.
Mol Biol Evol ; 29(11): 3601-11, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22723303

RESUMO

We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%-28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%-22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types.


Assuntos
DNA de Plantas/genética , Genoma de Planta/genética , Orobanchaceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos , Análise por Conglomerados , Tamanho do Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Especificidade da Espécie
12.
Mol Phylogenet Evol ; 69(3): 772-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23850498

RESUMO

Numerous molecular systematic studies within Brassicaceae have resulted in a strongly improved classification of the family, as morphologically defined units at and above the generic level were often found to poorly reflect phylogenetic relationships. Here, we focus on tribe Alysseae, which despite its size (accounting for about 7% of all species) has only received limited coverage in previous phylogenetic studies. Specifically, we want to test phylogenetic hypotheses implied by current tribal and generic circumscriptions and to put diversification within tribe Alysseae into a temporal context. To this end, sequence data from the nrDNA ITS and two plastid regions (ndhF gene, trnL-F intergenic spacer) were obtained for 176 accessions, representing 16 out of 17 currently recognized genera of the tribe, and were phylogenetically analysed, among others, using a relaxed molecular clock. Due to large discrepancies with respect to published ages of Brassicaceae, age estimates concerning Alysseae are, however, burdened with considerable uncertainty. The tribe is monophyletic and contains four strongly supported major clades and Alyssum homalocarpum, whose relationships among each other remain uncertain due to incongruences between nuclear and plastid DNA markers. The largest genus of the tribe, Alyssum, is not monophyletic and contains, apart from A. homalocarpum, two distinct lineages, corresponding to sections Alyssum, Psilonema, Gamosepalum and to sections Odontarrhena and Meniocus, respectively. Clypeola, whose monophyly is supported only by the plastid data, is very closely related to and possibly nested within the second Alyssum lineage. Species of the genus Fibigia intermingle with those of Alyssoides, Clastopus, Degenia, and Physoptychis, rendering Fibigia polyphyletic. The monotypic genera Leptoplax and Physocardamum are embedded in Bornmuellera.


Assuntos
Brassicaceae/classificação , Evolução Molecular , Filogenia , Teorema de Bayes , Brassicaceae/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 69(3): 634-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891952

RESUMO

Phyteuma is a chromosomally and ecologically diverse vascular plant genus and constitutes an excellent system for studying both the role of chromosomal change for species diversification and the evolution of high-mountain biota. This kind of research is, however, hampered by the lack of a sound phylogenetic framework exacerbated by the notoriously low predictive power of traditional taxonomy with respect to phylogenetic relationships in Campanulaceae. Based on a comprehensive taxon sampling and analyses of nuclear and plastid sequence and AFLP fingerprint data, Phyteuma is confirmed as a monophyletic group sister to the monotypic Physoplexis, which is in line with their peculiar flower morphologies. Within Phyteuma two clades, largely corresponding to previously recognized sections, are consistently found. The traditional circumscription of taxonomic series is largely rejected. Whereas distinctness of the currently recognized species is mostly corroborated, some interspecific relationships remain ambiguous due to incongruences between nuclear and plastid data. Major forces for diversification and evolution of Phyteuma are descending dysploidy (i.e., a decrease in chromosome base number) as well as allopatric and ecological differentiation within the Alps, the genus' center of species diversity.


Assuntos
Campanulaceae/classificação , Cromossomos de Plantas/genética , Evolução Molecular , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Campanulaceae/genética , Núcleo Celular/genética , DNA de Plantas/genética , Cariótipo , Funções Verossimilhança , Modelos Genéticos , Plastídeos/genética , Análise de Sequência de DNA
14.
Front Plant Sci ; 14: 1182073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304726

RESUMO

Although the mountains in South-West Asia are a global biodiversity hotspot, our understanding of their biodiversity, especially in the commonly remote alpine and subnival zones, is still limited. This is well exemplified here by Aethionema umbellatum (Brassicaceae), a species considered to have a wide yet disjoint distribution in the Zagros and Yazd-Kerman mountains of western and central Iran. Morphological and molecular phylogenetic data (based on plastid trnL-trnF and nuclear ITS sequences) show that A. umbellatum is restricted to a single mountain range in southwestern Iran (Dena Mts., southern Zagros), whereas populations from central Iran (Yazd-Kerman and central Zagros) and from western Iran (central Zagros) belong to species new to science, A. alpinum and A. zagricum, respectively. Both new species are phylogenetically and morphologically close to A. umbellatum, with which they share unilocular fruits and one-seeded locules. However, they are easily distinguishable by leaf shape, petal size, and fruit characters. This study confirms that the alpine flora of the Irano-Anatolian region is still poorly known. As the proportion of rare and local endemic species in alpine habitats is high, these habitats are of prime interest for conservation efforts.

15.
Front Genome Ed ; 5: 1176290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153078

RESUMO

Novel techniques such as CRISPR/Cas are increasingly being applied for the development of modern crops. However, the regulatory framework for production, labelling and handling of genome-edited organisms varies worldwide. Currently, the European Commission is raising the question whether genome-edited organisms should still be regulated as genetically modified organisms in the future or whether a deregulation should be implemented. In our paper, based on the outcome of a 2-year case study on oilseed rape in Austria, we show that seed spillage during import and subsequent transport and handling activities is a key factor for the unintended dispersal of seeds into the environment, the subsequent emergence of feral oilseed rape populations and their establishment and long-term persistence in natural habitats. These facts must likewise be considered in case of genome-edited oilseed rape contaminants that might be accidentally introduced with conventional kernels. We provide evidence that in Austria a high diversity of oilseed rape genotypes, including some with alleles not known from cultivated oilseed rape in Austria, exists at sites with high seed spillage and low weed management, rendering these sites of primary concern with respect to possible escape of genome-edited oilseed rape varieties into the environment. Since appropriate detection methods for single genome-edited oilseed rape events have only recently started to be successfully developed and the adverse effects of these artificial punctate DNA exchanges remain largely unknown, tracing the transmission and spread of these genetic modifications places high requirements on their monitoring, identification, and traceability.

16.
Front Plant Sci ; 14: 1249292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929170

RESUMO

Introduction: Despite the wealth of studies dealing with the invasions of alien plants, invasions of alien genotypes of native species (cryptic invasions) have been vastly neglected. The impact of cryptic invasions on the biodiversity of plant communities can, however, be significant. Inland saline habitats and halophytes (i.e., salt-tolerant plant species) are especially threatened by this phenomenon as they inhabit fragmented remnants of largely destroyed habitats, but at the same time some of these halophytic species are rapidly spreading along salt-treated roads. To study potential cryptic invasion of halophytes, the patterns of genome size and ploidy variation in the Puccinellia distans complex (Poaceae), the most rapidly spreading roadside halophyte in Central Europe, were investigated. Methods: DNA flow cytometry with confirmatory chromosome counts were employed to assess ploidy levels of 1414 individuals from 133 populations of the P. distans complex. In addition, climatic niche modelling was used to predict the distributions of selected cytotypes. Results: Eight groups differing in ploidy level and/or genome size were discovered, one diploid (2x; 2n = 14), two tetraploid (4xA, 4xB; 2n = 28), one pentaploid (5x; 2n = 35), three hexaploid (6xA, 6xB, 6xC; 2n = 42), and one heptaploid (7x; 2n = 49). The hexaploids (mostly the 6xC cytotype) were widespread through the study area, spreading intensively in both anthropogenic and natural habitats and probably hybridizing with the natural habitat dwelling tetraploids. In contrast, the non-hexaploid cytotypes rarely spread and were predominantly confined to natural habitats. Discussion: The extensive spread of the hexaploid cytotypes along roadsides has most likely facilitated their incursion into natural habitats. The colonization of new natural habitats by the hexaploids may pose a threat to the indigenous Puccinellia populations by compromising their genetic integrity and/or by outcompeting them.

17.
Ecol Lett ; 15(12): 1439-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006492

RESUMO

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Assuntos
Biodiversidade , Variação Genética , Plantas/genética , Ecossistema , Geografia
18.
Mol Ecol ; 21(5): 1255-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22276934

RESUMO

Recent evidence suggests that survival of arctic-alpine organisms in peripheral or interior glacial refugia are not mutually exclusive and may both be involved in shaping an organism's Pleistocene history, yet potentially at different time levels. Here, we test this hypothesis in a high-mountain plant (diploid lineage of Senecio carniolicus, Asteraceae) from the Eastern European Alps, in which patterns of morphological variation and current habitat requirements suggest survival in both types of refugia. To this end, we used AFLPs, nuclear and plastid DNA sequences and analysed them, among others, within a graph theoretic framework and using novel Bayesian methods of phylogeographic inference. On the basis of patterns of genetic diversity, occurrence of rare markers, distribution of distinct genetic lineages and patterns of range connectivity both interior refugia in the formerly strongly glaciated central Alps and peripheral refugia along the southern margin of the Alps were identified. The presence of refugia congruently inferred by markers resolving at different time levels suggests that these refugia acted as such throughout several glacial cycles. The high degree of range persistence together with gradual range expansion, which contrasts with the extent of range shifts implied for other Alpine species, is likely responsible for incipient lineage differentiation evident from the genetic data. Replacing a simplistic peripheral vs. interior refugia dualism by more complex models involving both types of refugia and considering different time levels will help identifying common phylogeographic patterns with respect to, for instance, location of refugia and colonization routes and elucidating their underlying genetic and/or ecological causes. DNA sequences have been deposited in GenBank under accession nos. FR796701­FR797793 and nos. HE614296­HE614583.


Assuntos
Variação Genética , Filogeografia , Senécio/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regiões Árticas , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Geografia , Haplótipos , Camada de Gelo , Senécio/classificação , Análise de Sequência de DNA
19.
Mol Ecol ; 21(18): 4618-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809067

RESUMO

Arctic-alpine biota occupy enormous areas in the Arctic and the northern hemisphere mountain ranges and have undergone major range shifts during their comparatively short history. The origins of individual arctic-alpine species remain largely unknown. In the case of the Purple saxifrage, Saxifraga oppositifolia, an important model for arctic-alpine plants, phylogeographic studies have remained inconclusive about early stages of the species' spatiotemporal diversification but have provided evidence for long-range colonization out of a presumed Beringian origin to cover today's circumpolar range. We re-evaluated the species' large-scale range dynamics based on a geographically extended sampling including crucial areas such as Central Asia and the (south-)eastern European mountain ranges and employing up-to-date phylogeographic analyses of a plastid sequence data set and a more restricted AFLP data set. In accordance with previous studies, we detected two major plastid DNA lineages also reflected in AFLP divergence, suggesting a long and independent vicariant history. Although we were unable to determine the species' area of origin, our results point to Europe (probably the Alps) and Central Asia, respectively, as the likely ancestral areas of the two main lineages. AFLP data suggested that contact areas between the two clades in the Carpathians, Northern Siberia and western Greenland were secondary. In marked contrast to high levels of diversity revealed in previous studies, populations from the major arctic refugium Beringia did not exhibit any plastid sequence polymorphism. Our study shows that adequate sampling of the southern, refugial populations is crucial for understanding the range dynamics of arctic-alpine species.


Assuntos
Filogeografia , Saxifragaceae/classificação , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regiões Árticas , Ásia Central , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Haplótipos , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo Genético , Saxifragaceae/genética , Análise de Sequência de DNA
20.
Am J Bot ; 99(6): 1043-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22645096

RESUMO

PREMISE OF THE STUDY: Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. METHODS: The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. KEY RESULTS: Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. CONCLUSIONS: Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.


Assuntos
Asteraceae/genética , Evolução Molecular , Hibridização Genética , Poliploidia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/classificação , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genoma de Planta/genética , Geografia , Hibridização in Situ Fluorescente , Cariótipo , México , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA