Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(86): 12122-12125, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36226547

RESUMO

The solution-state structure of an amine-functionalised Cu24L24 cage (MOP-15) is elucidated, enabling its direct covalent crosslinking into a series of highly tuneable organogels. These soft porous networks exhibit up to a ∼10-fold increase in capacity for iodine compared to the discrete cage precursor.

2.
Front Chem ; 9: 696081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113604

RESUMO

The incorporation of reactive functional groups onto the exterior of metal-organic cages (MOCs) opens up new opportunities to link their well-defined scaffolds into functional porous solids. Amine moieties offer access to a rich catalogue of covalent chemistry; however, they also tend to coordinate undesirably and interfere with MOC formation, particular in the case of Cu2 paddlewheel-based MOCs. We demonstrate that tuning the basicity of an aniline-functionalized ligand enables the self-assembly of a soluble, amine-functionalized Cu4L4 lantern cage (1). Importantly, we show control over the coordinative propensity of the exterior amine of the ligand, which enables us to isolate a crystalline, two-dimensional metal-organic framework composed entirely of MOC units (2). Furthermore, we show that the nucleophilicity of the exterior amine of 1 can be accessed in solution to generate a cross-linked cage polymer (3) via imine condensation.

3.
Chem Commun (Camb) ; 57(23): 2915-2918, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33616581

RESUMO

We report the self-sorting of a dynamic combinatorial library (DCL) of metal-organic cages composed of a rotationally isomerisable ligand. Convergence of the DCL occurs upon crystallisation and leads to low-symmetry Cu4L2L'2 cages that display differing porosities based on their overall shape and ligand configuration.

4.
Chem Sci ; 11(14): 3664-3671, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34094054

RESUMO

Synthetic porous materials composed of metal-organic polyhedra (MOPs) have found application in topical areas such as gas storage, separation and catalysis. Control over their physical properties (e.g. porosity) has typically been achieved through ligand design or judicious choice of metal ions. Here, we demonstrate pore-size control and on/off porosity in Cu4L4 MOPs by exploiting their structural non-rigidity. We report an aldehyde-functionalised MOP (1) that can be isolated in five distinct solvatomorphs, each exhibiting different structural flexibility. When soaked in MeOH, two of these solvatomorphs undergo a rapid transformation to a thermodynamically favoured phase, whilst in acetone they template the crystallisation of an entirely new crystal packing. We support these findings by single and powder X-ray diffraction and rationalise the observed phase transformations by lattice energy calculations. Of the five solvatomorphs, three can be obtained as solvent-exchanged pseudo-polymorphs with distinct porosities in their activated form (SABET = 35-455 m2 g-1). Further control over the crystal packing of MOPs is achieved through covalent post-assembly modifications, which promote the crystallisation of isoreticular 2-D sheet-like structures.

5.
Chem Commun (Camb) ; 56(85): 12969-12972, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996491

RESUMO

A Cu4L4 metal-organic cage (MOC) composed of amine-protected ligands forms supramolecular coordination polymers (SCPs) upon covalent post-assembly deprotection. The amorphous SCPs form by virtue of aniline-copper coordination and possess a tunable porosity based on the rate of deprotection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA