Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2214970120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802430

RESUMO

Most biomolecular activity takes place in aqueous environments, and it is strongly influenced by the surrounding water molecules. The hydrogen bond networks that these water molecules form are likewise influenced by their interactions with the solutes, and thus, it is crucial to understand this reciprocal process. Glycoaldehyde (Gly), often considered the smallest sugar, represents a good template to explore the steps of solvation and determine how the organic molecule shapes the structure and hydrogen bond network of the solvating water cluster. Here, we report a broadband rotational spectroscopy study on the stepwise hydration of Gly with up to six water molecules. We reveal the preferred hydrogen bond networks formed when water molecules start to form three-dimensional (3D) topologies around an organic molecule. We observe that water self-aggregation prevails even in these early stages of microsolvation. These hydrogen bond networks manifest themselves through the insertion of the small sugar monomer in the pure water cluster in a way in which the oxygen atom framework and hydrogen bond network resemble those of the smallest three-dimensional pure water clusters. Of particular interest is the identification, in both the pentahydrate and hexahydrate, of the previously observed prismatic pure water heptamer motif. Our results show that some specific hydrogen bond networks are preferred and survive the solvation of a small organic molecule, mimicking those of pure water clusters. A many-body decomposition analysis of the interaction energy is also performed to rationalize the strength of a particular hydrogen bond, and it successfully confirms the experimental findings.

2.
Phys Chem Chem Phys ; 26(12): 9432-9452, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446207

RESUMO

Constitutional and conformational isomers of bromopropanol are vibrationally and rotationally characterised with parallels drawn to the structural chlorine analogues. A previous microwave spectroscopic study of the chloropropanols is re-examined and all systems are explored by Raman jet spectroscopy. For bromine, the entire nuclear quadrupole coupling tensors are accurately determined and compared to their chlorine counterparts. Tensor asymmetry parameters are determined and linked with the hydrogen bond strength as indicated by the downshift of the OH-stretching frequency. The spectroscopic constants derived from the observed transitions are used as benchmarks for a large variety of electronic structure methods followed by harmonic and anharmonic rovibrational treatments. The CCSD(T) electronic structure calculations provide the best performance, in particular once anharmonic and relativistic corrections are applied or implied. Standard DFT approaches vary substantially with respect to their systematic error cancellation across the investigated species, and cost-effective compromises for the different observables are proposed.

3.
Phys Chem Chem Phys ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958416

RESUMO

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.

4.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38934634

RESUMO

We present a simple approximation to estimate the largest charge that a given molecule can hold until fragmentation into smaller charged species becomes more energetically favorable. This approximation solely relies on the ionization potentials, electron affinities of the parent and fragment species, and also on the neutral parent's dissociation energy. By parameterizing these quantities, it is possible to obtain analytical phase diagrams of polycationic stability. We demonstrate the applicability of this approach by discussing the maximal charge dependence on the size of the molecular system. A numerical demonstration for linear polyenes, monocyclic annulenes, and helium clusters is provided.

5.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762446

RESUMO

The investigation on the preferred arrangement and intermolecular interactions of gas phase solute-water clusters gives insights into the intermolecular potentials that govern the structure and dynamics of the aqueous solutions. Here, we report the investigation of hydrated coordination networks of benzaldehyde-(water)n (n = 1-6) clusters in a pulsed supersonic expansion using broadband rotational spectroscopy. Benzaldehyde (PhCHO) is the simplest aromatic aldehyde that involves both hydrophilic (CHO) and hydrophobic (phenyl ring) functional groups, which can mimic molecules of biological significance. For the n = 1-3 clusters, the water molecules are connected around the hydrophilic CHO moiety of benzaldehyde through a strong CO···HO hydrogen bond and weak CH···OH hydrogen bond(s). For the larger clusters, the spectra are consistent with the structures in which the water clusters are coordinated on the surface of PhCHO with both the hydrophilic CHO and hydrophobic phenyl ring groups being involved in the bonding interactions. The presence of benzaldehyde does not strongly interfere with the cyclic water tetramer and pentamer, which retain the same structure as in the pure water cluster. The book isomer instead of cage or prism isomers of the water hexamer is incorporated into the microsolvated cluster. The PhCHO molecule deviates from the planar structure upon sequential addition of water molecules. The PhCHO-(H2O)1-6 clusters may serve as a simple model system in understanding the solute-water interactions of biologically relevant molecules in an aqueous environment.

6.
J Am Chem Soc ; 145(31): 17201-17210, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494139

RESUMO

Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O-H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H218O, D2O, and HDO isotopologues of the phenanthrene-H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.

7.
Chemphyschem ; 24(23): e202300561, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673788

RESUMO

We report on the synthesis and characterization using high-resolution rotational spectroscopy of three bulky thioethers that feature an adamantyl group connected to a sulfur atom. Detailed experimental and theoretical structures are provided and compared with the 1,1'-diadamantyl ether. In addition, we expand on previous findings concerning microsolvation of adamantyl derivatives by investigating the cluster formation between these thioethers and a water molecule. The investigation of such clusters provides valuable insights into the sulfur-centered hydrogen bonding in thioethers with increasing size and steric repulsion.

8.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975483

RESUMO

Borneol is a natural monoterpene with significant applications in various industries, including medicine and perfumery. It presents several diastereomers with different physical and chemical properties, influenced by their unique structures and interactions with molecular receptors. However, a complete description of its inherent structure and solvent interactions remains elusive. Here, we report a detailed investigation of the gas-phase experimental structures of borneol and isoborneol, along with the description of their microsolvation complexes with the common solvents water and dimethyl sulfoxide. The molecules and complexes were studied using chirped-pulse Fourier transform microwave spectroscopy coupled to a supersonic expansion source. Although three rotamers are potentially populated under the conditions of the supersonic expansion, only one of them was observed for each monomer. The examination of the monohydrated complexes revealed structures stabilized by hydrogen bonds and non-covalent C-H⋯O interactions, with water as the hydrogen bond donor. Interestingly, in the clusters with dimethyl sulfoxide, borneol and isoborneol change their roles acting as donors. We further identified a higher-energy rotamer of the borneol monomer in one of the complexes with dimethyl sulfoxide, while that rotamer was missing in the experiment for the monomer. This observation is not common and highlights a specific position in borneol especially favorable for forming stable complexes, which could have implications in the understanding of the unique physical and chemical properties of the diastereomers.

9.
Angew Chem Int Ed Engl ; 62(14): e202218539, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36719030

RESUMO

The initial stages of the gas-phase nucleation between CO2 and monoethanolamine were investigated via broadband rotational spectroscopy with the aid of extensive theoretical structure sampling. Sub-nanometer-scale aggregation patterns of monoethanolamine-(CO2 )n , n=1-4, were identified. An interesting competition between the monoethanolamine intramolecular hydrogen bond and the intermolecular interactions between monoethanolamine and CO2 upon cluster growth was discovered, revealing an intriguing CO2 binding priority to the hydroxyl group over the amine group. These findings are in sharp contrast to the general results for aqueous solutions. In the quinary complex, a cap-like CO2 tetramer was observed cooperatively surrounding the monoethanolamine. As the cluster approaches the critical size of new particle formation, the contribution of CO2 self-assembly to the overall stability increases.

10.
Angew Chem Int Ed Engl ; 62(37): e202308273, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37467465

RESUMO

The role-exchanging concerted torsional motion of two hydrogen atoms in the homochiral dimer of trans-1,2-cyclohexanediol was characterized through a combination of broadband rotational spectroscopy and theoretical modeling. The results reveal that the concerted tunneling motion of the hydrogen atoms leads to the inversion of the sign of the dipole moment components along the a and b principal axes, due to the interchange motion that cooperatively breaks and reforms one intermolecular hydrogen bond. This motion is also coupled with two acceptor switching motions. The energy difference between the two ground vibrational states arising from this tunneling motion was determined to be 29.003(2) MHz. The corresponding wavefunctions suggest that the two hydrogen atoms are evenly delocalized on two equivalent potential wells, which differs from the heterochiral case where the hydrogen atoms are confined in separate wells, as the permutation-inversion symmetry breaks down. This intriguing contrast in hydrogen-atom behavior between homochiral and heterochiral environments could further illuminate our understanding of the role of chirality in intermolecular interactions and dynamics.

11.
Angew Chem Int Ed Engl ; 62(27): e202219045, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866692

RESUMO

Microwave three-wave mixing has emerged as a novel approach for studying chiral molecules in the gas phase. This technique employs resonant microwave pulses and is a non-linear and coherent approach. It serves as a robust method to differentiate between the enantiomers of chiral molecules and to determine the enantiomeric excess, even in complex chiral mixtures. Besides such analytical applications, the use of tailored microwave pulses allows us to control and manipulate chirality at the molecular level. Here, an overview of some recent developments in the area of microwave three-wave mixing and its extension to enantiomer-selective population transfer is provided. The latter is an important step towards enantiomer separation-in energy and finally in space. In the last section, we present new experimental results on how to improve enantiomer-selective population transfer to achieve an enantiomeric excess of about 40 % in the rotational level of interest using microwave pulses alone.

12.
Phys Chem Chem Phys ; 24(21): 12849-12859, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532923

RESUMO

Binary complexes between the chiral monoterpenoids camphor and α-fenchol were explored with vibrational and rotational jet spectroscopy as well as density functional theory in order to explore how chirality can influence the binding preferences in gas-phase complexes. The global minimum structures of the two diastereomers were assigned. It is found that chirality recognition leads to different compromises in the fine balance between intermolecular interactions. While one isomer features a stronger hydrogen bond, the other one is more tightly arranged and stabilized by larger London dispersion interactions. These new spectroscopic results help understand the influence of chirality in molecular aggregation and unveil the kind of interactions involved between a chiral alcohol and a chiral ketone with large dispersion contributions.


Assuntos
Cânfora , Norbornanos , Canfanos , Ligação de Hidrogênio , Londres
13.
Phys Chem Chem Phys ; 24(44): 27312-27320, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326023

RESUMO

We present a rotational spectroscopy study of alpha-methoxy phenylacetic acid in the gas phase. This acid is a derivative of mandelic acid and is used in various organic reactions. The conformational landscape of alpha-methoxy phenylacetic acid was explored to gain insight into its intramolecular dynamics. A rich rotational spectrum was obtained using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz range. Five conformers out of six calculated low-energy forms were identified in the spectrum, and the assignment of the 13C singly substituted isotopologues for the lowest-energy conformer led to its accurate structure determination. Splitting patterns were analyzed and attributed to the internal rotation of a methyl top. The analysis of the non-covalent interactions within the molecule highlights the subtle balance in the stabilization of the different conformers. We thus provide high-level structural and intramolecular dynamics information that is also used to benchmark the performance of quantum-chemical calculations.


Assuntos
Fenilacetatos , Teoria Quântica , Conformação Molecular , Micro-Ondas
14.
Phys Chem Chem Phys ; 24(3): 1598-1609, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34942639

RESUMO

For complexes involving aromatic species, substitution effects can influence the preferred geometry. Using broadband rotational spectroscopy, we report the structures of three naphthol-aromatic ring complexes with different heteroatoms (furan and thiophene) and alkyl groups (2,5-dimethylfuran). The aim was to analyze the influence of the presence of heteroatoms or alkyl groups on the structure of the complex and the kind of intermolecular forces that control it. Face or edge arrangements can take place in these complexes via π-π or O-H⋯O/O-H⋯π interactions, respectively. All the experimentally observed complexes present O-H⋯O/O-H⋯π interactions with the hydroxyl group, with different structures and intermolecular interactions depending on the heteroatom present in the five-membered aromatic rings, yielding different symmetries in the experimental structure. Structures are experimentally identified through the use of planar moments of inertia. Further results from SAPT calculations show that dispersion and electrostatic interactions contribute similarly to the stabilization of all the studied complexes. These new spectroscopic results shed light on the influence of dispersion and hydrogen bonding in molecular aggregation of systems with substituted aromatic residues.

15.
Phys Chem Chem Phys ; 24(9): 5539-5545, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174841

RESUMO

We report the reinvestigation of the high-resolution rotational spectrum of estradiol. After removing the known spectral lines corresponding to three conformers of estradiol identified in the gas phase before, a large number of spectral lines remained unassigned in the spectrum. The observation of remaining lines is a common feature in spectra obtained by broadband rotational spectroscopy. In our reinvestigation, the detection of certain patterns resulted in two new sets of experimental rotational constants. Here we describe a systematic analysis, which together with quantum-chemical computations culminated in the assignment of two estrone conformers, namely exhibiting the trans- and the cis-arrangement of the hydroxy group attached to the rigid steroid backbone. Estrone and estradiol only differ in two atomic mass units, and they show a dynamic interconversion equilibrium under certain conditions, which might also have been the case in our experiments due to the heating temperature of 195 °C. The results illustrate the potential of high-resolution rotational spectroscopy to discern between structurally related molecules and to provide their gas-phase structures without information beforehand exploiting the benefit of having remaining unassigned rotational transitions in the spectrum.


Assuntos
Estradiol , Estrona , Análise Espectral
16.
Phys Chem Chem Phys ; 24(46): 28495-28505, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36408893

RESUMO

Gas phase homodimers of 3,3,3-trifluoro-1,2-epoxypropane (TFO), a molecule which has shown promise as an effective chiral tag for determining the absolute stereochemistry and the enantiomeric composition of chiral analytes, are explored using a variety of quantum chemistry models and rotational spectroscopy. The potential surface governing the interaction of the two molecules is rapidly explored using the artificial bee colony algorithm for homodimer candidates that are subsequently optimized by quantum chemistry methods. Although all model chemistries employed agree that the lowest energy form of the heterochiral homodimer of TFO (RS or SR) is lower in energy than that of the homochiral dimer (RR or SS), the energy spacings among the lower energy isomers of each and indeed the absolute energy ordering of the isomers of each are very model dependent. The experimental results suggest that the B3LYP-D3BJ/def2-TZVP model chemistry is the most reliable and provides excellent estimates of spectroscopic constants. In accord with theoretical predictions the non-polar lowest energy form of the heterochiral homodimer is not observed, while two isomers of the homochiral dimer are observed and spectroscopically characterized. Observation and assignment of the spectra for all three unique singly-substituted 13C isotopologues, in addition to that of the most abundant isotopologue for the lowest energy isomer of the homochiral homodimer of TFO, provide structural information that compares very favorably with theoretical predictions, most notably that the presence of three fluorine atoms on the trifluoromethyl group removes their direct participation in the intermolecular interactions, which instead comprise two equivalent pairs of CH⋯O hydrogen bonds between the two epoxide rings augmented by favorable dispersion interactions between the rings themselves.

17.
Phys Chem Chem Phys ; 24(38): 23096-23105, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876592

RESUMO

We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.

18.
J Chem Phys ; 156(15): 154304, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459312

RESUMO

A pure rotational spectrum of methyl p-tolyl sulfoxide (MTSO) was studied using chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 18-26 GHz. A single conformer was unambiguously observed in the supersonic jet expansion, which is consistent with the conformational analysis performed using quantum-chemical calculations. Rotational transitions were split into two components of A and E symmetries due to the low-barrier internal rotation of the ring methyl group [V3 = 11.0178(23) cm-1]. The low energy barrier for the methyl top internal rotation implies an electron-withdrawing effect of the group at the opposite side of the phenyl ring, in comparison with other para-substituted toluenes. The effective ground state (r0) geometry was derived using the rotational constants from the parent species and the 34S and eight 13C singly substituted isotopologues. Compared to two other sulfoxides, methyl phenyl sulfoxide and methyl 4-nitrophenyl sulfoxide, the sulfoxide group in MTSO is slightly more twisted with respect to the plane of the phenyl ring, which could be attributed to the moderate electron-donating effect of the p-methyl group. Furthermore, the pyramidal inversion that interconverts the handedness at the sulfur stereogenic center was explored in the electronic ground (S0) and excited (S1) states with nudged elastic band and time-dependent density functional theory methods. It was found that the pyramidal inversion in S1 is easier than in S0, showing that optical excitation to S1 will facilitate an effectively barrier-free inversion.

19.
Angew Chem Int Ed Engl ; 61(49): e202210819, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36250281

RESUMO

Broadband rotational spectroscopy is used to investigate the geometries of 3-methyl-3-oxetanemethanol and its complexes with up to six water molecules, which are produced in supersonic jets. The main low-energy isomers of these clusters are unambiguously identified in the spectra with the support of quantum-chemical calculations. The conformation of the 3-methyl-3-oxetanemethanol geometry is found to be influenced by the microsolvation effects. The hydrogen-bond arrangements in the hydrate complexes, which are governed by the water-water and water-solute interactions, exhibit characteristic configurations with increasing number of water molecules and resemble the main isomers of the corresponding pure water clusters. Evolution of the hydrogen-bonding structures from one-dimensional chains to two-dimensional rings and further to multicyclic three-dimensional networks is observed, which provides information about the build-up process.

20.
Chemistry ; 27(20): 6198-6203, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33512017

RESUMO

Fluorinated derivatives of biological molecules have proven to be highly efficient at modifying the biological activity of a given protein through changes in the stability and the kind of docking interactions. These interactions can be hindered or facilitated based on the hydrophilic/hydrophobic character of a particular protein region. Diadamantyl ether (C20 H30 O) possesses both kinds of docking sites, serving as a good template to model these important contacts with aromatic fluorinated counterparts. In this work, an experimental study on the structures of several complexes between diadamantyl ether and benzene as well as a series of fluorinated benzenes is reported to analyze the effect of H→F substitution on the interaction and structure of the resulting molecular clusters using rotational spectroscopy. All experimentally observed complexes are largely dominated by London dispersion interactions with the hydrogen-terminated surface areas of diadamantyl ether. Already single substitution of one hydrogen atom with fluorine changes the preferred docking site of the complexes. However, the overall contributions of the different intermolecular interactions are similar for the different complexes, contrary to previous studies focusing on the difference in interactions using fluorinated and non-fluorinated molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA