RESUMO
BACKGROUND: TKA with conventional metal-backed tibial implants subjects the tibial metaphysis to stress shielding, with resultant loss of bone density. QUESTIONS/PURPOSES: We hypothesized tibial bone mineral density in patients with porous tantalum (trabecular metal) tibial baseplates would (1) more closely parallel tibial bone mineral density in the nonoperative control limb and (2) be better maintained than in conventional historical controls. PATIENTS AND METHODS: We prospectively followed 41 patients (35 men, six women) 60 years of age or younger undergoing TKA with uncemented trabecular metal tibial components. Patients underwent dual-energy xray absorptiometry scans of both proximal tibiae preoperatively and at 2 months, 1 year, and 2 years postoperatively. We determined bone mineral density in three selected regions of interest (Zone 1, between the pegs; Zone 2, beneath the pegs; Zone 3, directly below entire baseplate). Precision analysis revealed a precision error of 4% or less for each region of interest, indicating adequate power to detect bone mineral density changes of 8% or greater. RESULTS: Bone mineral density percent change was different between the operative and nonoperative knees only in Zone 3 and only at 2 months. There was no change in bone mineral density in any zone in the nonoperative knee at any time. Only in Zone 3 did the bone mineral density decrease at 2 months in the operative knee. CONCLUSIONS: Trabecular metal implants appear to maintain tibial bone mineral density in a parallel fashion to the nonoperative limb in this population and better than historical controls.