Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(Database issue): D1063-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203882

RESUMO

The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.


Assuntos
Bases de Dados de Proteínas , Proteômica , Internet , Espectrometria de Massas , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Software
2.
BMC Bioinformatics ; 15: 98, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24712852

RESUMO

BACKGROUND: Measuring the impact of combinations of genetic or chemical perturbations on cellular fitness, sometimes referred to as synthetic lethal screening, is a powerful method for obtaining novel insights into gene function and drug action. Especially when performed at large scales, gene-gene or gene-drug interaction screens can reveal complex genetic interactions or drug mechanism of action or even identify novel therapeutics for the treatment of diseases.The result of such large-scale screen results can be represented as a matrix with a numeric score indicating the cellular fitness (e.g. viability or doubling time) for each double perturbation. In a typical screen, the majority of combinations do not impact the cellular fitness. Thus, it is critical to first discern true "hits" from noise. Subsequent data exploration and visualization methods can assist to extract meaningful biological information from the data. However, despite the increasing interest in combination perturbation screens, no user friendly open-source program exists that combines statistical analysis, data exploration tools and visualization. RESULTS: We developed TOPS (Tool for Combination Perturbation Screen Analysis), a Java and R-based software tool with a simple graphical user interface that allows the user to import, analyze, filter and plot data from double perturbation screens as well as other compatible data. TOPS was designed in a modular fashion to allow the user to add alternative importers for data formats or custom analysis scripts not covered by the original release.We demonstrate the utility of TOPS on two datasets derived from functional genetic screens using different methods. Dataset 1 is a gene-drug interaction screen and is based on Luminex xMAP technology. Dataset 2 is a gene-gene short hairpin (sh)RNAi screen exploring the interactions between deubiquitinating enzymes and a number of prominent oncogenes using massive parallel sequencing (MPS). CONCLUSIONS: TOPS provides the benchtop scientist with a free toolset to analyze, filter and visualize data from functional genomic gene-gene and gene-drug interaction screens with a flexible interface to accommodate different technologies and analysis algorithms in addition to those already provided here. TOPS is freely available for academic and non-academic users and is released as open source.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Genes , Software , Algoritmos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Gráficos por Computador , Interpretação Estatística de Dados , Feminino , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Lineares , Interferência de RNA
3.
J Struct Biol ; 164(1): 153-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18692140

RESUMO

The graphics processing unit (GPU), which originally was used exclusively for visualization purposes, has evolved into an extremely powerful co-processor. In the meanwhile, through the development of elaborate interfaces, the GPU can be used to process data and deal with computationally intensive applications. The speed-up factors attained compared to the central processing unit (CPU) are dependent on the particular application, as the GPU architecture gives the best performance for algorithms that exhibit high data parallelism and high arithmetic intensity. Here, we evaluate the performance of the GPU on a number of common algorithms used for three-dimensional image processing. The algorithms were developed on a new software platform called "CUDA", which allows a direct translation from C code to the GPU. The implemented algorithms include spatial transformations, real-space and Fourier operations, as well as pattern recognition procedures, reconstruction algorithms and classification procedures. In our implementation, the direct porting of C code in the GPU achieves typical acceleration values in the order of 10-20 times compared to a state-of-the-art conventional processor, but they vary depending on the type of the algorithm. The gained speed-up comes with no additional costs, since the software runs on the GPU of the graphics card of common workstations.


Assuntos
Algoritmos , Gráficos por Computador/normas , Processamento de Imagem Assistida por Computador/normas , Gráficos por Computador/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA