Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746207

RESUMO

Bats are considered unique in their ability to harbor large numbers of viruses and serve as reservoirs for zoonotic viruses that have the potential to spill over into humans. However, these animals appear relatively resistant to the pathogenic effects of many viruses. Mounting evidence suggests that bats may tolerate viral infections due to unique immune features. These include evolutionary innovations in inflammatory pathways and in the molecules involved in viral sensing, interferon induction, and downstream interferon-induced antiviral effectors. We sought to determine whether interferon-stimulated genes (ISGs) from the black flying fox ( Pteropus alecto ) encoded proteins with unique antiviral activity relative to their human orthologs. Accordingly, we compared the antiviral activity of over 50 ISG human-bat ortholog pairs to identify differences in individual effector functions. We identified IRF7 from Pteropus alecto (Pa.IRF7) as a potent and broad-acting antiviral molecule that provides robust antiviral protection without prior activation. We show that Pa.IRF7 uniquely induces a subset of protective ISGs independent of canonical IFN signaling, which leads to protection from alphaviruses, a flavivirus, a rhabdovirus, and a paramyxovirus. In uninfected cells, Pa.IRF7 partially localizes to the nucleus and can directly bind interferon-sensitive regulatory elements (ISREs). Compared to human IRF7, Pa.IRF7 also has additional serines in its C terminal domain that contribute to antiviral activity and may serve as unique phosphorylation hubs for activation. These properties constitute major differences between bat and human IRF7 that offer additional insight into the potential uniqueness of the black flying fox immune system.

2.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38798375

RESUMO

Mammalian mRNAs possess an N7-methylguanosine (m7G) cap and 2'O methylation of the initiating nucleotide at their 5' end, whereas certain viral RNAs lack these characteristic features. The human antiviral restriction factor IFIT1 recognizes and binds to specific viral RNAs that lack the 5' features of host mRNAs, resulting in targeted suppression of viral RNA translation. This interaction imposes significant host-driven evolutionary pressures on viruses, and many viruses have evolved mechanisms to evade the antiviral action of human IFIT1. However, little is known about the virus-driven pressures that may have shaped the antiviral activity of IFIT1 genes across mammals. Here, we take an evolution-guided approach to show that the IFIT1 gene is rapidly evolving in multiple mammalian clades, with positive selection acting upon several residues in distinct regions of the protein. In functional assays with 39 IFIT1s spanning diverse mammals, we demonstrate that IFIT1 exhibits a range of antiviral phenotypes, with many orthologs lacking antiviral activity against viruses that are strongly suppressed by other IFIT1s. We further show that IFIT1s from human and a bat, the black flying fox, inhibit Venezuelan equine encephalitis virus (VEEV) and strongly bind to Cap0 RNAs. Unexpectedly, chimpanzee IFIT1, which differs from human IFIT1 by only 8 amino acids, does not inhibit VEEV infection and exhibits minimal Cap0 RNA-binding. In mutagenesis studies, we determine that amino acids 364 and 366, with the latter undergoing positive selection, are sufficient to confer the differential anti-VEEV activity between human and chimpanzee IFIT1. These data suggest that virus-host genetic conflicts have influenced the antiviral specificity of IFIT1 across diverse mammalian orders.

3.
bioRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38895352

RESUMO

Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.

4.
mBio ; 15(6): e0076824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771062

RESUMO

The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spikes from multiple SARS-CoV-2 variants and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for the delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrated protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses. IMPORTANCE: The rapid evolution of SARS-CoV-2 variants poses a challenge for immune recognition and antibody therapies. However, the virus is constrained by the requirement that it recognizes a human host receptor protein. A recombinant ACE2 could protect against SARS-CoV-2 infection by functioning as a soluble decoy receptor. We designed a mutant version of ACE2 with impaired catalytic activity to enable the purification of the protein using a single affinity purification step. This protein can be nebulized and retains the ability to bind the relevant domains from SARS-CoV-1 and SARS-CoV-2. Moreover, this protein inhibits viral infection against a panel of coronaviruses in cells. Finally, we developed an aerosolized delivery system for animal studies and show the modified ACE2 offers protection in an animal model of COVID-19. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Camundongos , Humanos , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Mutação , Aerossóis , Células HEK293 , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA