Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochemistry ; 56(42): 5663-5670, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28937750

RESUMO

Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.


Assuntos
Histona Desacetilases/química , Ferro/química , Peptídeos/química , Proteínas Repressoras/química , Zinco/química , Acetilação , Catálise , Domínio Catalítico , Histona Desacetilases/metabolismo , Humanos , Ferro/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Zinco/metabolismo
2.
SLAS Technol ; 29(5): 100173, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094983

RESUMO

Polymerase ß (POLB), with dual functionality as a lyase and polymerase, plays a critical role in the base excision repair (BER) pathway to maintain genomic stability. POLB knockout and rescue studies in BRCA1/2-mutant cancer cell lines revealed that inhibition of lyase and polymerase activity is required for the synthetic lethal interaction observed with PARP inhibitors, highlighting POLB as a valuable therapeutic target. Traditional biochemical assays to screen for enzyme inhibitors focus on a single substrate to product relationship and limit the comprehensive analysis of enzymes such as POLB that utilize multiple substrates or catalyze a multi-step reaction. This report describes the first high-throughput mass spectrometry-based screen to measure the two distinct biochemical activities of POLB in a single assay using a duplexed self-assembled monolayer desorption ionization (SAMDI) mass spectrometry methodology. A multiplexed assay for POLB dual enzymatic activities was developed optimizing for kinetically balanced conditions and a collection of 200,000 diverse small molecules was screened in the duplexed format. Small molecule modulators identified in the screen were confirmed in a traditional fluorescence-based polymerase strand-displacement assay and an orthogonal label-free binding assay using SAMDI affinity selection mass spectrometry (ASMS). This work demonstrates the flexibility of high-throughput mass spectrometry approaches in drug discovery and highlights a novel application of SAMDI technology that opens new avenues for multiplexed high-throughput screening.

3.
Antiviral Res ; 200: 105279, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278580

RESUMO

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome conoravirus 2 (SARS-CoV-2) remains a promising therapeutic target to combat COVID-19. Our group recently described a novel duplexed biochemical assay that combines self-assembled monolayers of alkanethiolates on gold with matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) to simultaneously measure 3CLpro and human rhinovirus 3C protease activities. This study describes applying the assay for the completion of a high-throughput duplexed screen of 300,000 diverse, drug-like small molecules in 3 days. The hits were confirmed and evaluated in dose response analyses against recombinant 3CLpro, HRV3C, and the human Cathepsin L proteases. The 3CLpro specific inhibitors were further assessed for activity in cellular cytotoxicity and anti-viral assays. Structure activity relationship studies informed on structural features required for activity and selectivity to 3CLpro over HRV3C. These results will guide the optimization of 3CLpro selective inhibitors to combat COVID-19 along with antiviral compounds against coronaviruses and rhinoviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Humanos , Espectrometria de Massas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Rhinovirus
4.
SLAS Discov ; 26(6): 775-782, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33754845

RESUMO

Arginase-1, an enzyme that catalyzes the reaction of L-arginine to L-ornithine, is implicated in the tumor immune response and represents an interesting therapeutic target in immuno-oncology. Initiating arginase drug discovery efforts remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for arginase activity. The assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z-factor > 0.8) and a significant assay window [signal-to-background ratio > 20] relative to fluorescent approaches. To validate the assay, the inhibition of the reference compound nor-NOHA (Nω-hydroxy-nor-L-arginine) was evaluated, and the IC50 measured to be in line with reported results (IC50 = 180 nM). The assay was then used to complete a screen of 175,000 compounds, demonstrating the high-throughput capacity of the approach. The label-free format also eliminates opportunities for false-positive results due to interference from library compounds and optical readouts. The assay methodology described here enables new opportunities for drug discovery for arginase and, due to the assay flexibility, can be more broadly applicable for measuring other amino acid-metabolizing enzymes.


Assuntos
Arginase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Arginase/análise , Arginase/antagonistas & inibidores , Arginina/metabolismo , Bioensaio , Biotina/metabolismo , Dimerização , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Ornitina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
SLAS Discov ; 26(8): 974-983, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34151629

RESUMO

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)-ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose-response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Ensaios de Triagem em Larga Escala , Rhinovirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Proteases Virais 3C/química , COVID-19/virologia , Descoberta de Drogas , Humanos , Ligantes , Espectrometria de Massas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico
6.
SLAS Discov ; 26(6): 766-774, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33870746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Exonucleases/antagonistas & inibidores , Exorribonucleases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , COVID-19/virologia , Clonagem Molecular , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Antiviral Res ; 187: 105020, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33515606

RESUMO

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. We previously reported the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay (Gurard-Levin et al., 2020). The assay was further improved by adding the rhinovirus HRV3C protease to the same well as the SARS-CoV-2 3CLpro enzyme. High substrate specificity for each enzyme allowed the proteases to be combined in a single assay reaction without interfering with their individual activities. This novel duplex assay was used to profile a diverse set of reference protease inhibitors. The protease inhibitors were grouped into three categories based on their relative potency against 3CLpro and HRV3C including those that are: equipotent against 3CLpro and HRV3C (GC376 and calpain inhibitor II), selective for 3CLpro (PF-00835231, calpain inhibitor XII, boceprevir), and selective for HRV3C (rupintrivir). Structural analysis showed that the combination of minimal interactions, conformational flexibility, and limited bulk allows GC376 and calpain inhibitor II to potently inhibit both enzymes. In contrast, bulkier compounds interacting more tightly with pockets P2, P3, and P4 due to optimization for a specific target display a more selective inhibition profile. Consistently, the most selective viral protease inhibitors were relatively weak inhibitors of human cathepsin L. Taken together, these results can guide the design of cysteine protease inhibitors that are either virus-specific or retain a broad antiviral spectrum against coronaviruses and rhinoviruses.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Rhinovirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Catepsina L/metabolismo , Descoberta de Drogas , Glicoproteínas/farmacologia , Humanos , Cinética , Modelos Moleculares , Inibidores de Proteases/química , Pirrolidinas/farmacologia , Ácidos Sulfônicos
8.
SLAS Discov ; 25(4): 361-371, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585521

RESUMO

A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA processing, stability, and translation. Methylation of adenosine at the N6 position (m6A) in messenger RNA (mRNA) is currently the most well-studied RNA modification and is catalyzed by the RNA methyltransferase complex METTL3/METTL14. Once generated, m6A can modulate mRNA splicing, export, localization, degradation, and translation. Although potent and selective inhibitors exist for several members of the Type I S-adenosylmethionine (SAM)-dependent methyltransferase family, no inhibitors have been reported for METTL3/METTL14 to date. To facilitate drug discovery efforts, a sensitive and robust mass spectrometry-based assay for METTL3/METTL14 using self-assembled monolayer desorption/ionization (SAMDI) technology has been developed. The assay uses an 11-nucleotide single-stranded RNA compared to a previously reported 27-nucleotide substrate. IC50 values of mechanism-based inhibitors S-adenosylhomocysteine (SAH) and sinefungin (SFG) are comparable between the SAMDI and radiometric assays that use the same substrate. This work demonstrates that SAMDI technology is amenable to RNA substrates and can be used for high-throughput screening and compound characterization for RNA-modifying enzymes.


Assuntos
Espectrometria de Massas/métodos , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/farmacologia , Descoberta de Drogas/tendências , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , S-Adenosil-Homocisteína/farmacologia
9.
Antiviral Res ; 182: 104924, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896566

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 µM), calpain inhibitors II and XII (IC50 ~20-25 µM). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ß-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas não Estruturais Virais/antagonistas & inibidores , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Glicoproteínas/farmacologia , Células HeLa , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
10.
Biochim Biophys Acta ; 1784(11): 1735-41, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18672101

RESUMO

Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resulted in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5Delta22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5Delta22 with Trx, under oxidizing conditions, with an IC50 of approximately 10 microM.


Assuntos
Escherichia coli/metabolismo , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Domínio Catalítico , DNA Polimerase Dirigida por DNA/metabolismo , Concentração Inibidora 50 , Ligantes , Dados de Sequência Molecular , Inibidores da Síntese de Ácido Nucleico , Oxirredução , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Tiorredoxinas/antagonistas & inibidores
11.
Methods Mol Biol ; 416: 83-102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392962

RESUMO

We present a whole-genome approach to genetic footprinting in Escherichia coli using Tn5-based transposons to determine gene essentiality. A population of cells is mutagenized and subjected to outgrowth under selective conditions. Transposon insertions in the surviving mutants are detected using nested polymerase chain reaction (PCR), agarose gel electrophoresis, and software-assisted PCR product size determination. Genomic addresses of these inserts are then mapped onto the E. coli genome sequence based on the PCR product lengths and the addresses of the corresponding genome-specific primers. Gene essentiality conclusions were drawn based on a semiautomatic analysis of the number and relative positions of inserts retained within each gene after selective outgrowth.


Assuntos
Pegada de DNA/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Elementos de DNA Transponíveis , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Mutagênese Insercional , Pegadas de Proteínas/métodos , Proteoma/genética , Proteoma/metabolismo
12.
SLAS Discov ; 22(10): 1211-1217, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28581894

RESUMO

In recent years, the ability to unambiguously identify complex mixtures of analytes with high accuracy and resolving power in a label-free format continues to expand the application of mass spectrometry (MS) in the drug discovery process. This advantage combined with improved instrumentation makes MS suitable for targets with limited alternative assays for high-throughput screening (HTS). We describe a novel screening format using Self-Assembled Monolayers and matrix-assisted laser Desorption Ionization (SAMDI) technology. SAMDI enables affinity capture of a target protein for use in a small-molecule-binding assay format. Subsequent ionization enables the inferred identification of noncovalent compound interactions. SAMDI technology overcomes shot-to-shot variability by uniformly saturating the surface with captured protein, thereby minimizing matrix crystallization "hot spots." Furthermore, the combination with high-resolution matrix-assisted laser desorption/ionization time of flight significantly reduces interference of small-molecule detection from salt, detergent, and matrix. By using a pooled library format, the SAMDI assay can significantly improve the throughput of MS-based screening irrespective of enzyme activity. Finally, we demonstrate binding affinity rank ordering from a pool of compounds that correlates with potency data from a biochemical assay.


Assuntos
Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bioensaio , Bovinos , Estudos de Viabilidade , Soluções
13.
Comb Chem High Throughput Screen ; 8(6): 545-51, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16178814

RESUMO

Selections from phage-displayed combinatorial peptide libraries are an effective strategy for identifying peptide ligands to target proteins. Existing protocols for constructing phage-displayed libraries utilize either ligation into double-stranded phage DNA or Kunkel mutagenesis with single-stranded phagemid DNA. Although the Kunkel approach rapidly provides library sizes of up to 10(11), as many as 20% of the phagemids may be non-recombinant. With several modifications to current Kunkel protocols, we have generated peptide libraries with sizes of up to 10(11) clones and recombination frequencies approaching 100%. The production of phage libraries, as opposed to phagemid libraries, simplifies selection experiments by eliminating the need for helper phage. Our approach relies upon the presence of an amber stop codon in the coding region of gene III of bacteriophage M13. Oligonucleotides containing randomized stretches of DNA are annealed to the phage genome such that the randomized region forms a heteroduplex with the stop codon. The oligonucleotide is then enzymatically extended to generate covalently-closed, circular DNA, which is electroporated into a non-suppressor strain of Escherichia coli. If the amber stop codon is present in the DNA molecule, protein III is not synthesized and the phage cannot propagate itself. This method is customizable for the display of either random or focused peptide libraries. To date, we have constructed 22 different libraries ranging from 8-20 amino acids in length, utilizing complete or reduced codon sets.


Assuntos
Bacteriófago M13/genética , Técnicas de Química Combinatória , Biblioteca de Peptídeos , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , DNA Recombinante/química , Vetores Genéticos , Dados de Sequência Molecular
14.
Chem Biol ; 11(6): 835-44, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15217616

RESUMO

We have constructed a phage-displayed library based on the human fibronectin tenth type III domain (FN3) scaffold by randomizing residues in its FG and BC loops. Screening against the SH3 domain of human c-Src yielded six different clones. Five of these contained proline-rich sequences in their FG loop that resembled class I (i.e., +xxPxxP) peptide ligands for the Src SH3 domain. The sixth clone lacked the proline-rich sequence and showed particularly high binding specificity to the Src SH3 domain among various SH3 domains tested. Competitive binding, loop replacement, and NMR perturbation experiments were conducted to analyze the recognition properties of selected binders. The strongest binder was able to pull down full-length c-Src from murine fibroblast cell extracts, further demonstrating the potential of this scaffold for use as an antibody mimetic.


Assuntos
Peptídeos/química , Fosfotransferases/química , Proteínas Proto-Oncogênicas/química , Domínios de Homologia de src/fisiologia , Animais , Sítios de Ligação , Ligação Competitiva , Proteína Tirosina Quinase CSK , Células Clonais , Fibronectinas/química , Humanos , Ligantes , Camundongos , Modelos Moleculares , Mimetismo Molecular/fisiologia , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/metabolismo , Fosfotransferases/metabolismo , Prolina/química , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Quinases da Família src
15.
J Biomol Screen ; 20(7): 842-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024947

RESUMO

Lysine acetylation plays a critical role in cellular regulation and is implicated in human disease. Sirtuin deacetylases remove acetyl groups from modified lysine residues, and sirtuin 3 (SIRT3) has been identified as a target for cancer therapeutics. Robust and high-throughput screening methods for these targets will be important to the development of therapeutics. This article describes the use of self-assembled monolayer desorption/ionization mass spectrometry, or SAMDI-MS-a label-free drug discovery tool--to characterize SIRT3 activity and discover inhibitors. SAMDI-MS was used to analyze a peptide array having 361 distinct acetylated peptides to identify an active SIRT3 substrate (GYK(Ac)RGC). This peptide was used in a screen of 100,000 small molecules to identify inhibitors of SIRT3. A total of 306 SIRT3 inhibitors were identified, with one compound, SDX-437, having an IC(50) of 700 nM with >100-fold selectivity for SIRT3 over SIRT1.


Assuntos
Descoberta de Drogas , Inibidores de Histona Desacetilases/farmacologia , Espectrometria de Massas , Sirtuína 3/antagonistas & inibidores , Acetilação , Descoberta de Drogas/métodos , Ativação Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas/métodos
16.
Microbiologyopen ; 4(1): 66-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417765

RESUMO

N(ε) -lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent N(ε) -lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD(+) -dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lisina/metabolismo , Sirtuínas/metabolismo , Acetilação , Especificidade por Substrato
17.
J Biomol Screen ; 20(6): 810-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25755264

RESUMO

Demethylation of histones by lysine demethylases (KDMs) plays a critical role in controlling gene transcription. Aberrant demethylation may play a causal role in diseases such as cancer. Despite the biological significance of these enzymes, there are limited assay technologies for study of KDMs and few quality chemical probes available to interrogate their biology. In this report, we demonstrate the utility of self-assembled monolayer desorption/ionization (SAMDI) mass spectrometry for the investigation of quantitative KDM enzyme kinetics and for high-throughput screening for KDM inhibitors. SAMDI can be performed in 384-well format and rapidly allows reaction components to be purified prior to injection into a mass spectrometer, without a throughput-limiting liquid chromatography step. We developed sensitive and robust assays for KDM1A (LSD1, AOF2) and KDM4C (JMJD2C, GASC1) and screened 13,824 compounds against each enzyme. Hits were rapidly triaged using a redox assay to identify compounds that interfered with the catalytic oxidation chemistry used by the KDMs for the demethylation reaction. We find that overall this high-throughput mass spectrometry platform coupled with the elimination of redox active compounds leads to a hit rate that is manageable for follow-up work.


Assuntos
Artefatos , Ensaios de Triagem em Larga Escala/métodos , Histona Desmetilases/metabolismo , Espectrometria de Massas/métodos , Oxirredução , Descoberta de Drogas/métodos , Ensaios Enzimáticos , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Bibliotecas de Moléculas Pequenas
18.
Comb Chem High Throughput Screen ; 7(1): 55-62, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14965261

RESUMO

When using multiple targets and libraries, selection of affinity reagents from phage-displayed libraries is a relatively time-consuming process. Herein, we describe an automation-amenable approach to accelerate the process by using alkaline phosphatase (AP) fusion proteins in place of the phage ELISA screening and subsequent confirmation steps with purified protein. After two or three rounds of affinity selection, the open reading frames that encode the affinity selected molecules (i.e., antibody fragments, engineered scaffold proteins, combinatorial peptides) are amplified from the phage or phagemid DNA molecules by PCR and cloned en masse by a Ligation Independent Cloning (LIC) method into a plasmid encoding a highly active variant of E. coli AP. This time-saving process identifies affinity reagents that work out of context of the phage and that can be used in various downstream enzyme linked binding assays. The utility of this approach was demonstrated by analyzing single-chain antibodies (scFvs), engineered fibronectin type III domains (FN3), and combinatorial peptides that were selected for binding to the Epsin N-terminal Homology (ENTH) domain of epsin 1, the c-Src SH3 domain, and the appendage domain of the gamma subunit of the clathrin adaptor complex, AP-1, respectively.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Escherichia coli/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
ACS Comb Sci ; 13(4): 347-50, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21639106

RESUMO

High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/química , Automação , Técnicas de Química Combinatória/instrumentação , Inibidores de Histona Desacetilases/agonistas , Inibidores de Histona Desacetilases/isolamento & purificação , Histona Desacetilases/química , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tecnologia Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA