Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Cell ; 163(3): 746-58, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496612

RESUMO

A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino-acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity, while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity, while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code.


Assuntos
Lectinas de Plantas/química , Lectinas de Plantas/genética , Fármacos Anti-HIV/química , Sequência de Carboidratos , Engenharia Genética , Mitógenos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Musa/química
2.
Nature ; 590(7845): 320-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260195

RESUMO

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/genética , Animais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Glicosilação , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Mesocricetus/genética , Mesocricetus/imunologia , Mesocricetus/virologia , Camundongos , Segurança , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
3.
Proc Natl Acad Sci U S A ; 119(30): e2203660119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858448

RESUMO

Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme's relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)-bound RT/double-stranded DNA (dsDNA), RT/RNA-DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3'-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.


Assuntos
Fármacos Anti-HIV , Farmacorresistência Viral , Transcriptase Reversa do HIV , HIV-1 , Piridonas , Inibidores da Transcriptase Reversa , Rilpivirina , Triazóis , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Microscopia Crioeletrônica , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , Mutação , Nitrilas/farmacologia , Conformação Proteica , Piridonas/química , Piridonas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Rilpivirina/química , Rilpivirina/farmacologia , Triazóis/química , Triazóis/farmacologia
4.
Cancer Immunol Immunother ; 73(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231448

RESUMO

The human CC chemokine receptor 8 (CCR8) is specifically expressed on tumor-infiltrating regulatory T cells (TITRs) and is a promising drug target for cancer immunotherapy. However, the role of CCR8 signaling in TITR biology and the effectiveness of CCR8 small molecule antagonists as TITR-targeting immunotherapy remain subjects of ongoing debate. In this work, we generated a novel cellular model of TITRs by culturing peripheral blood mononuclear cell-derived regulatory T cells in medium containing tumor cell-conditioned medium, CD3/CD28 activator, interleukin-2 and 1α,25-dihydroxyvitamin D3. This cellular model (named TITR mimics) highly and stably expressed a series of TITR signature molecules, including CCR8, FOXP3, CD30, CD39, CD134, CD137, TIGIT and Tim-3. Moreover, TITR mimics displayed robust in vitro immunosuppressive activity. To unravel the functional role of CCR8 in TITR mimics, a chemotaxis assay was performed showing strong and CCR8-specific migration toward CCL1, the natural chemokine agonist of CCR8. However, either stimulation (with CCL1) or blocking (with the small molecule antagonist NS-15) of CCR8 signaling did not affect the immunosuppressive activity, proliferation and survival of TITR mimics. Collectively, our work provides a method for the generation of TITR mimics in vitro, which can be used to study TITR biology and to evaluate drug candidates targeting TITRs. Furthermore, our findings suggest that CCR8 signaling primarily regulates migration of these cells.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Receptores CCR8 , Linfócitos T Reguladores , Meios de Cultivo Condicionados
5.
Cell Commun Signal ; 22(1): 43, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233929

RESUMO

BACKGROUND: The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS: Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, ß-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS: All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in ß-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards ß-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION: This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of ß-arrestin1/2 subtypes, respectively. However, compared to ß-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.


Assuntos
Quimiocinas , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas/metabolismo , Ligantes , Quimiocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
6.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308278

RESUMO

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Assuntos
Quimiocina CXCL10 , Quimiotaxia , Glicosaminoglicanos , Animais , Cricetinae , Humanos , Camundongos , Quimiocina CXCL10/metabolismo , Cricetulus , Células Endoteliais/metabolismo , Heparina/metabolismo , Linfócitos T/metabolismo , Glicosaminoglicanos/metabolismo
7.
Org Biomol Chem ; 22(15): 3059-3067, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545887

RESUMO

This article presents the controlled synthesis of a rare example of C,C'-linked bis-cyclam architecture in mild conditions through the "bis-aminal" route previously used for the advantageous synthesis of cyclam, N- and C-functional cyclams and N,N'-bis-cyclams. Two synthetic pathways were explored with the smart design of α,ß-unsaturated ketones or alkyl halides bis-cyclizing agents. The first led to the isolation of a key intermediate for the future design of N-functionalized bis-cyclams, whereas the second allowed the preparation of the targeted C,C'-xylylene-bis-cyclam under mild conditions with decent yield. This compound was then studied as a CXCR4 receptor inhibitor, one of the main applications known for bis-macrocyclic compounds, in particular in the context of HIV (human immunodeficiency virus) infection. Although results demonstrated that its potency is lower (i.e. 137-fold higher IC50) than the gold standard AMD3100 against HIV infection, clear evidence of CXCR4 inhibition is presented, confirming the potential of this novel architecture and related compounds in this research field.


Assuntos
Infecções por HIV , Compostos Heterocíclicos , Humanos , Receptores CXCR4/metabolismo , Compostos Heterocíclicos/farmacologia , Transdução de Sinais , Benzilaminas/farmacologia
8.
Bioorg Chem ; 145: 107181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354503

RESUMO

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Quimiocina CCL1/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Amidas , Receptores CCR8 , Sulfonamidas/farmacologia , Naftalenos/farmacologia
9.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474466

RESUMO

Disubstituted isothiazolo[4,3-b]pyridines are known inhibitors of cyclin G-associated kinase. Since 3-substituted-7-aryl-isothiazolo[4,3-b]pyridines remain elusive, a strategy was established to prepare this chemotype, starting from 2,4-dichloro-3-nitropyridine. Selective C-4 arylation using ligand-free Suzuki-Miyaura coupling and palladium-catalyzed aminocarbonylation functioned as key steps in the synthesis. The 3-N-morpholinyl-7-(3,4-dimethoxyphenyl)-isothiazolo[4,3-b]pyridine was completely devoid of GAK affinity, in contrast to its 3,5- and 3,6-disubstituted congeners. Molecular modeling was applied to rationalize its inactivity as a GAK ligand.


Assuntos
Paládio , Piridinas , Piridinas/farmacologia , Modelos Moleculares , Ligantes , Ciclina G , Catálise
10.
PLoS Pathog ; 17(11): e1010114, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843584

RESUMO

Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease.


Assuntos
Pulmão/parasitologia , Malária/complicações , Proteínas de Membrana/deficiência , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Síndrome do Desconforto Respiratório/prevenção & controle , Animais , Progressão da Doença , Feminino , Pulmão/metabolismo , Pulmão/patologia , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/parasitologia , Síndrome do Desconforto Respiratório/patologia
11.
Bioorg Chem ; 139: 106755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544272

RESUMO

CCR8 agonists hold promise for the treatment of various auto-immune diseases. Despite the fact that phenoxybenzylpiperazine derivatives are known to be endowed with CCR8 agonistic activity, systematic structure-activity relationship studies have not been reported. In this study, ZK756326, a previously disclosed CCR8 agonist, was divided in various fragments and each subunit was subjected to structural modifications. All newly synthesized analogues were evaluated in a CCR8 calcium mobilization assay, revealing that only limited structural variation was tolerated in both phenyl rings and at the benzylic position. In contrast, various linkers gave analogues with good CCR8 agonistic potency. In addition, the presence of small substituents on the piperazinyl moiety or the exchange of the piperazinyl for a piperidinyl group afforded compounds with promising CCR8 agonism, with the most potent congener being 10-fold more potent than ZK756326.


Assuntos
Receptores CCR8 , Transdução de Sinais , Relação Estrutura-Atividade , Receptores CCR8/antagonistas & inibidores
12.
Cell Mol Life Sci ; 79(6): 293, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562519

RESUMO

Atypical chemokine receptor 3 (ACKR3, formerly CXC chemokine receptor 7) is a G protein-coupled receptor that recruits ß-arrestins, but is devoid of functional G protein signaling after receptor stimulation. In preclinical models of liver and lung fibrosis, ACKR3 was previously shown to be upregulated after acute injury in liver sinusoidal and pulmonary capillary endothelial cells, respectively. This upregulation was linked with a pro-regenerative and anti-fibrotic role for ACKR3. A recently described ACKR3-targeting small molecule agonist protected mice from isoproterenol-induced cardiac fibrosis. Here, we aimed to evaluate its protective role in preclinical models of liver and lung fibrosis. After confirming its in vitro pharmacological activity (i.e., ACKR3-mediated ß-arrestin recruitment and receptor binding), in vivo administration of this ACKR3 agonist led to increased mouse CXCL12 plasma levels, indicating in vivo interaction of the agonist with ACKR3. Whereas twice daily in vivo administration of the ACKR3 agonist lacked inhibitory effect on bleomycin-induced lung fibrosis, it had a modest, but significant anti-fibrotic effect in the carbon tetrachloride (CCl4)-induced liver fibrosis model. In the latter model, ACKR3 stimulation affected the expression of several fibrosis-related genes and led to reduced collagen content as determined by picro-sirius red staining and hydroxyproline quantification. These data confirm that ACKR3 agonism, at least to some extent, attenuates fibrosis, although this effect is rather modest and heterogeneous across various tissue types. Stimulating ACKR3 alone without intervening in other signaling pathways involved in the multicellular crosstalk leading to fibrosis will, therefore, most likely not be sufficient to deliver a satisfactory clinical outcome.


Assuntos
Fibrose Pulmonar , Receptores CXCR , Animais , Camundongos , beta-Arrestinas/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Células Endoteliais/metabolismo , Fígado/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Receptores CXCR/química , Receptores CXCR/genética , Receptores CXCR/metabolismo
13.
Mol Cell Proteomics ; 20: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34481949

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)-dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences.


Assuntos
Proteínas de Membrana/metabolismo , Sulfonamidas/farmacologia , Linfócitos T/metabolismo , Linhagem Celular , Retículo Endoplasmático , Humanos , Marcação por Isótopo , Proteômica , Especificidade por Substrato
14.
Am J Respir Crit Care Med ; 205(1): 60-74, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724391

RESUMO

Rationale: Fibrotic hypersensitivity pneumonitis (fHP) is an interstitial lung disease caused by sensitization to an inhaled allergen. Objectives: To identify the molecular determinants associated with progression of fibrosis. Methods: Nine fHP explant lungs and six unused donor lungs (as controls) were systematically sampled (4 samples/lung). According to microcomputed tomography measures, fHP cores were clustered into mild, moderate, and severe fibrosis groups. Gene expression profiles were assessed using weighted gene co-expression network analysis, xCell, gene ontology, and structure enrichment analysis. Gene expression of the prevailing molecular traits was also compared with idiopathic pulmonary fibrosis (IPF). The explant lung findings were evaluated in separate clinical fHP cohorts using tissue, BAL samples, and computed tomography scans. Measurements and Main Results: We found six molecular traits that associated with differential lung involvement. In fHP, extracellular matrix and antigen presentation/sensitization transcriptomic signatures characterized lung zones with only mild structural and histological changes, whereas signatures involved in honeycombing and B cells dominated the transcriptome in the most severely affected lung zones. With increasing disease severity, endothelial function was progressively lost, and progressive disruption in normal cellular homeostatic processes emerged. All six were also found in IPF, with largely similar associations with disease microenvironments. The molecular traits correlated with in vivo disease behavior in a separate clinical fHP cohort. Conclusions: We identified six molecular traits that characterize the morphological progression of fHP and associate with in vivo clinical behavior. Comparing IPF with fHP, the transcriptome landscape was determined considerably by local disease extent rather than by diagnosis alone.


Assuntos
Alveolite Alérgica Extrínseca/genética , Alveolite Alérgica Extrínseca/patologia , Pulmão/patologia , Transcriptoma , Adulto , Idoso , Alveolite Alérgica Extrínseca/diagnóstico , Estudos de Casos e Controles , Progressão da Doença , Feminino , Fibrose , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
15.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834952

RESUMO

AL-471, the leading exponent of a class of potent HIV and enterovirus A71 (EV-A71) entry inhibitors discovered in our research group, contains four l-tryptophan (Trp) units bearing an aromatic isophthalic acid directly attached to the C2 position of each indole ring. Starting from AL-471, we (i) replaced l-Trp with d-Trp, (ii) inserted a flexible linker between C2 and the isophthalic acid, and (iii) substituted a nonaromatic carboxylic acid for the terminal isophthalic acid. Truncated analogues lacking the Trp motif were also synthesized. Our findings indicate that the antiviral activity seems to be largely independent of the stereochemistry (l- or d-) of the Trp fragment and also that both the Trp unit and the distal isophthalic moiety are essential for antiviral activity. The most potent derivative, 23 (AL-534), with the C2 shortest alkyl urea linkage (three methylenes), showed subnanomolar potency against different EV-71 clinical isolates. This finding was only observed before with the early dendrimer prototype AL-385 (12 l-Trp units) but remained unprecedented for the reduced-size prototype AL-471. Molecular modeling showed the feasibility of high-affinity binding of the novel l-Trp-decorated branches of 23 (AL-534) to an alternative site on the VP1 protein that harbors significant sequence variation among EV-71 strains.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Inibidores da Fusão de HIV , Humanos , Triptofano/metabolismo , Antivirais/farmacologia
16.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903345

RESUMO

Upregulated CXCR2 signalling is found in numerous inflammatory, autoimmune and neurodegenerative diseases, as well as in cancer. Consequently, CXCR2 antagonism is a promising therapeutic strategy for treatment of these disorders. We previously identified, via scaffold hopping, a pyrido[3,4-d]pyrimidine analogue as a promising CXCR2 antagonist with an IC50 value of 0.11 µM in a kinetic fluorescence-based calcium mobilization assay. This study aims at exploring the structure-activity relationship (SAR) and improving the CXCR2 antagonistic potency of this pyrido[3,4-d]pyrimidine via systematic structural modifications of the substitution pattern. Almost all new analogues completely lacked the CXCR2 antagonism, the exception being a 6-furanyl-pyrido[3,4-d]pyrimidine analogue (compound 17b) that is endowed with similar antagonistic potency as the original hit.


Assuntos
Neoplasias , Receptores de Quimiocinas , Receptores de Interleucina-8B , Humanos , Pirimidinas/química , Receptores de Quimiocinas/antagonistas & inibidores , Relação Estrutura-Atividade , Receptores de Interleucina-8B/antagonistas & inibidores
17.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067641

RESUMO

Sixteen new 2-substituted quinazolines were synthesized using a straightforward methodology starting from 2-methoxybezoic acid or 3-methoxy-2-naphthoic acid. The anti-proliferative activity of the target compounds was evaluated against nine cancer cell lines. Additionally, all the compounds were screened for their potency and selectivity against a panel of 109 kinases and four bromodomains, using Differential Scanning Fluorimetry (DSF). Compound 17 bearing a 2-methoxyphenyl substitution along with a basic side chain displayed a remarkable profile against the majority of the tested cell lines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinazolinas/farmacologia , Linhagem Celular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia
18.
Traffic ; 21(2): 250-264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31675144

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the co-translational translocation of human CD4 (huCD4) into the endoplasmic reticulum lumen in a signal peptide (SP)-dependent way. We propose that CADA binds the nascent huCD4 SP in a folded conformation within the translocon resembling a normally transitory state during translocation. Here, we used alanine scanning on the huCD4 SP to identify the signature for full susceptibility to CADA. In accordance with our previous work, we demonstrate that residues in the vicinity of the hydrophobic h-region are critical for sensitivity to CADA. In particular, exchanging Gln-15, Val-17 or Pro-20 in the huCD4 SP for Ala resulted in a resistant phenotype. Together with positively charged residues at the N-terminal portion of the mature protein, these residues mediate full susceptibility to the co-translational translocation inhibitory activity of CADA towards huCD4. In addition, sensitivity to CADA is inversely related to hydrophobicity in the huCD4 SP. In vitro translocation experiments confirmed that the general hydrophobicity of the h-domain and positive charges in the mature protein are key elements that affect both the translocation efficiency of huCD4 and the sensitivity towards CADA. Besides these two general SP parameters that determine the functionality of the signal sequence, unique amino acid pairs (L14/Q15 and L19/P20) in the SP hydrophobic core add specificity to the sensitivity signature for a co-translational translocation inhibitor.


Assuntos
Antígenos CD4 , Sinais Direcionadores de Proteínas , Inibidores da Síntese de Proteínas , Antígenos CD4/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sinais Direcionadores de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
19.
J Neuroinflammation ; 19(1): 293, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482436

RESUMO

BACKGROUND: HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is an incapacitating neuroinflammatory disorder for which no disease-modifying therapy is available, but corticosteroids provide some clinical benefit. Although HAM/TSP pathogenesis is not fully elucidated, older age, female sex and higher proviral load are established risk factors. We investigated systemic cytokines and a novel chronic inflammatory marker, GlycA, as possible biomarkers of immunopathogenesis and therapeutic response in HAM/TSP, and examined their interaction with established risk factors. PATIENTS AND METHODS: We recruited 110 People living with HTLV-1 (PLHTLV-1, 67 asymptomatic individuals and 43 HAM/TSP patients) with a total of 946 person-years of clinical follow-up. Plasma cytokine levels (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF) and GlycA were quantified by Cytometric Bead Array and 1NMR, respectively. Cytokine signaling and prednisolone response were validated in an independent cohort by nCounter digital transcriptomics. We used multivariable regression, machine learning algorithms and Bayesian network learning for biomarker identification. RESULTS: We found that systemic IL-6 was positively correlated with both age (r = 0.50, p < 0.001) and GlycA (r = 0.45, p = 0.00049) in asymptomatics, revealing an 'inflammaging" signature which was absent in HAM/TSP. GlycA levels were higher in women (p = 0.0069), but cytokine levels did not differ between the sexes. IFN-γ (p = 0.007) and IL-17A (p = 0.0001) levels were increased in untreated HAM/TSP Multivariable logistic regression identified IL-17A and proviral load as independent determinants of clinical status, resulting in modest accuracy of predicting HAM/TSP status (64.1%), while a machine learning-derived decision tree classified HAM/TSP patients with 90.7% accuracy. Pre-treatment GlycA and TNF levels significantly predicted clinical worsening (measured by Osame Motor Disability Scale), independent of proviral load. In addition, a poor prednisolone response was significantly correlated with higher post-treatment IFN-γ levels. Likewise, a transcriptomic IFN signaling score, significantly correlated with previously proposed HAM/TSP biomarkers (CASP5/CXCL10/FCGR1A/STAT1), was efficiently blunted by in vitro prednisolone treatment of PBMC from PLHTLV-1 and incident HAM/TSP. CONCLUSIONS: An age-related increase in systemic IL-6/GlycA levels reveals inflammaging in PLHTLV-1, in the absence of neurological disease. IFN-γ and IL-17A are biomarkers of untreated HAM/TSP, while pre-treatment GlycA and TNF predict therapeutic response to prednisolone pulse therapy, paving the way for a precision medicine approach in HAM/TSP.


Assuntos
Infecções por HTLV-I , Transtornos Motores , Doenças Neuroinflamatórias , Feminino , Humanos , Teorema de Bayes , Citocinas , Vírus Linfotrópico T Tipo 1 Humano , Interleucina-17 , Interleucina-6 , Leucócitos Mononucleares , Transtornos Motores/virologia , Doenças Neuroinflamatórias/virologia , Infecções por HTLV-I/complicações
20.
Mol Divers ; 26(1): 1-14, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33043404

RESUMO

In this paper, we report the synthesis of novel hybrids 2-14 based on itaconic acid and fluoroaniline, pyridine, indole and quinoline scaffolds. Itaconic acid is a naturally occurring compound with a Michael acceptor moiety, a key structural feature in several anticancer and antiviral drugs, responsible for the covalent binding of a drug to the cysteine residue of a specific protein. Aromatic parts of the hybrids also come from the substances reported as anticancer or antiviral agents. The synthetic route employed to access the amido-ester hybrids 2-13 used monomethyl itaconate or monomethyl itaconyl chloride and corresponding amines as the starting materials. Dimers 14 and 15 with two aminoindole or mefloquine moieties were prepared from itaconic acid and corresponding amino derivative, using standard coupling conditions (HATU/DIEA). All hybrids exerted anticancer effects in vitro against almost all the tumour cell lines that were evaluated (MCF-7, HCT 116, H460, LN-229, Capan-1, DND-41, HL-60, K-562, Z-138). Solid tumour cells were, in general, more responsive than the haematological cancer cells. The MCF-7 breast adenocarcinoma cell line appeared the most sensitive. Amido-ester 12 with chloroquine core and mefloquine homodimer 15 showed the highest activity with GI50 values between 0.7 and 8.6 µM. In addition, compound 15 also exerted antiviral activity against Zika virus and Coxsackievirus B4 in low micromolar concentrations.


Assuntos
Antineoplásicos , Infecção por Zika virus , Zika virus , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Succinatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA