Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur Radiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536463

RESUMO

OBJECTIVE: To investigate the effect of uncertainty estimation on the performance of a Deep Learning (DL) algorithm for estimating malignancy risk of pulmonary nodules. METHODS AND MATERIALS: In this retrospective study, we integrated an uncertainty estimation method into a previously developed DL algorithm for nodule malignancy risk estimation. Uncertainty thresholds were developed using CT data from the Danish Lung Cancer Screening Trial (DLCST), containing 883 nodules (65 malignant) collected between 2004 and 2010. We used thresholds on the 90th and 95th percentiles of the uncertainty score distribution to categorize nodules into certain and uncertain groups. External validation was performed on clinical CT data from a tertiary academic center containing 374 nodules (207 malignant) collected between 2004 and 2012. DL performance was measured using area under the ROC curve (AUC) for the full set of nodules, for the certain cases and for the uncertain cases. Additionally, nodule characteristics were compared to identify trends for inducing uncertainty. RESULTS: The DL algorithm performed significantly worse in the uncertain group compared to the certain group of DLCST (AUC 0.62 (95% CI: 0.49, 0.76) vs 0.93 (95% CI: 0.88, 0.97); p < .001) and the clinical dataset (AUC 0.62 (95% CI: 0.50, 0.73) vs 0.90 (95% CI: 0.86, 0.94); p < .001). The uncertain group included larger benign nodules as well as more part-solid and non-solid nodules than the certain group. CONCLUSION: The integrated uncertainty estimation showed excellent performance for identifying uncertain cases in which the DL-based nodule malignancy risk estimation algorithm had significantly worse performance. CLINICAL RELEVANCE STATEMENT: Deep Learning algorithms often lack the ability to gauge and communicate uncertainty. For safe clinical implementation, uncertainty estimation is of pivotal importance to identify cases where the deep learning algorithm harbors doubt in its prediction. KEY POINTS: • Deep learning (DL) algorithms often lack uncertainty estimation, which potentially reduce the risk of errors and improve safety during clinical adoption of the DL algorithm. • Uncertainty estimation identifies pulmonary nodules in which the discriminative performance of the DL algorithm is significantly worse. • Uncertainty estimation can further enhance the benefits of the DL algorithm and improve its safety and trustworthiness.

2.
N Engl J Med ; 382(6): 503-513, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31995683

RESUMO

BACKGROUND: There are limited data from randomized trials regarding whether volume-based, low-dose computed tomographic (CT) screening can reduce lung-cancer mortality among male former and current smokers. METHODS: A total of 13,195 men (primary analysis) and 2594 women (subgroup analyses) between the ages of 50 and 74 were randomly assigned to undergo CT screening at T0 (baseline), year 1, year 3, and year 5.5 or no screening. We obtained data on cancer diagnosis and the date and cause of death through linkages with national registries in the Netherlands and Belgium, and a review committee confirmed lung cancer as the cause of death when possible. A minimum follow-up of 10 years until December 31, 2015, was completed for all participants. RESULTS: Among men, the average adherence to CT screening was 90.0%. On average, 9.2% of the screened participants underwent at least one additional CT scan (initially indeterminate). The overall referral rate for suspicious nodules was 2.1%. At 10 years of follow-up, the incidence of lung cancer was 5.58 cases per 1000 person-years in the screening group and 4.91 cases per 1000 person-years in the control group; lung-cancer mortality was 2.50 deaths per 1000 person-years and 3.30 deaths per 1000 person-years, respectively. The cumulative rate ratio for death from lung cancer at 10 years was 0.76 (95% confidence interval [CI], 0.61 to 0.94; P = 0.01) in the screening group as compared with the control group, similar to the values at years 8 and 9. Among women, the rate ratio was 0.67 (95% CI, 0.38 to 1.14) at 10 years of follow-up, with values of 0.41 to 0.52 in years 7 through 9. CONCLUSIONS: In this trial involving high-risk persons, lung-cancer mortality was significantly lower among those who underwent volume CT screening than among those who underwent no screening. There were low rates of follow-up procedures for results suggestive of lung cancer. (Funded by the Netherlands Organization of Health Research and Development and others; NELSON Netherlands Trial Register number, NL580.).


Assuntos
Tomografia Computadorizada de Feixe Cônico , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/mortalidade , Idoso , Bélgica/epidemiologia , Reações Falso-Positivas , Feminino , Humanos , Incidência , Neoplasias Pulmonares/epidemiologia , Masculino , Uso Excessivo dos Serviços de Saúde , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Sistema de Registros , Fatores Sexuais , Fumar/epidemiologia
3.
Radiology ; 308(2): e223308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526548

RESUMO

Background Prior chest CT provides valuable temporal information (eg, changes in nodule size or appearance) to accurately estimate malignancy risk. Purpose To develop a deep learning (DL) algorithm that uses a current and prior low-dose CT examination to estimate 3-year malignancy risk of pulmonary nodules. Materials and Methods In this retrospective study, the algorithm was trained using National Lung Screening Trial data (collected from 2002 to 2004), wherein patients were imaged at most 2 years apart, and evaluated with two external test sets from the Danish Lung Cancer Screening Trial (DLCST) and the Multicentric Italian Lung Detection Trial (MILD), collected in 2004-2010 and 2005-2014, respectively. Performance was evaluated using area under the receiver operating characteristic curve (AUC) on cancer-enriched subsets with size-matched benign nodules imaged 1 and 2 years apart from DLCST and MILD, respectively. The algorithm was compared with a validated DL algorithm that only processed a single CT examination and the Pan-Canadian Early Lung Cancer Detection Study (PanCan) model. Results The training set included 10 508 nodules (422 malignant) in 4902 trial participants (mean age, 64 years ± 5 [SD]; 2778 men). The size-matched external test sets included 129 nodules (43 malignant) and 126 nodules (42 malignant). The algorithm achieved AUCs of 0.91 (95% CI: 0.85, 0.97) and 0.94 (95% CI: 0.89, 0.98). It significantly outperformed the DL algorithm that only processed a single CT examination (AUC, 0.85 [95% CI: 0.78, 0.92; P = .002]; and AUC, 0.89 [95% CI: 0.84, 0.95; P = .01]) and the PanCan model (AUC, 0.64 [95% CI: 0.53, 0.74; P < .001]; and AUC, 0.63 [95% CI: 0.52, 0.74; P < .001]). Conclusion A DL algorithm using current and prior low-dose CT examinations was more effective at estimating 3-year malignancy risk of pulmonary nodules than established models that only use a single CT examination. Clinical trial registration nos. NCT00047385, NCT00496977, NCT02837809 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Horst and Nishino in this issue.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Detecção Precoce de Câncer , Canadá , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Tomografia Computadorizada por Raios X/métodos
4.
Eur Radiol ; 33(11): 8279-8288, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37338552

RESUMO

OBJECTIVE: To study trends in the incidence of reported pulmonary nodules and stage I lung cancer in chest CT. METHODS: We analyzed the trends in the incidence of detected pulmonary nodules and stage I lung cancer in chest CT scans in the period between 2008 and 2019. Imaging metadata and radiology reports from all chest CT studies were collected from two large Dutch hospitals. A natural language processing algorithm was developed to identify studies with any reported pulmonary nodule. RESULTS: Between 2008 and 2019, a total of 74,803 patients underwent 166,688 chest CT examinations at both hospitals combined. During this period, the annual number of chest CT scans increased from 9955 scans in 6845 patients in 2008 to 20,476 scans in 13,286 patients in 2019. The proportion of patients in whom nodules (old or new) were reported increased from 38% (2595/6845) in 2008 to 50% (6654/13,286) in 2019. The proportion of patients in whom significant new nodules (≥ 5 mm) were reported increased from 9% (608/6954) in 2010 to 17% (1660/9883) in 2017. The number of patients with new nodules and corresponding stage I lung cancer diagnosis tripled and their proportion doubled, from 0.4% (26/6954) in 2010 to 0.8% (78/9883) in 2017. CONCLUSION: The identification of incidental pulmonary nodules in chest CT has steadily increased over the past decade and has been accompanied by more stage I lung cancer diagnoses. CLINICAL RELEVANCE STATEMENT: These findings stress the importance of identifying and efficiently managing incidental pulmonary nodules in routine clinical practice. KEY POINTS: • The number of patients who underwent chest CT examinations substantially increased over the past decade, as did the number of patients in whom pulmonary nodules were identified. • The increased use of chest CT and more frequently identified pulmonary nodules were associated with more stage I lung cancer diagnoses.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Incidência , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/epidemiologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/epidemiologia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/epidemiologia
5.
Radiology ; 300(2): 438-447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003056

RESUMO

Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pulmonary nodules detected at screening CT. Materials and Methods In this retrospective study, the DL algorithm was developed with 16 077 nodules (1249 malignant) collected -between 2002 and 2004 from the National Lung Screening Trial. External validation was performed in the following three -cohorts -collected between 2004 and 2010 from the Danish Lung Cancer Screening Trial: a full cohort containing all 883 nodules (65 -malignant) and two cancer-enriched cohorts with size matching (175 nodules, 59 malignant) and without size matching (177 -nodules, 59 malignant) of benign nodules selected at random. Algorithm performance was measured by using the area under the receiver operating characteristic curve (AUC) and compared with that of the Pan-Canadian Early Detection of Lung Cancer (PanCan) model in the full cohort and a group of 11 clinicians composed of four thoracic radiologists, five radiology residents, and two pulmonologists in the cancer-enriched cohorts. Results The DL algorithm significantly outperformed the PanCan model in the full cohort (AUC, 0.93 [95% CI: 0.89, 0.96] vs 0.90 [95% CI: 0.86, 0.93]; P = .046). The algorithm performed comparably to thoracic radiologists in cancer-enriched cohorts with both random benign nodules (AUC, 0.96 [95% CI: 0.93, 0.99] vs 0.90 [95% CI: 0.81, 0.98]; P = .11) and size-matched benign nodules (AUC, 0.86 [95% CI: 0.80, 0.91] vs 0.82 [95% CI: 0.74, 0.89]; P = .26). Conclusion The deep learning algorithm showed excellent performance, comparable to thoracic radiologists, for malignancy risk estimation of pulmonary nodules detected at screening CT. This algorithm has the potential to provide reliable and reproducible malignancy risk scores for clinicians, which may help optimize management in lung cancer screening. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Tammemägi in this issue.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias Pulmonares/patologia , Programas de Rastreamento , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Doses de Radiação , Estudos Retrospectivos , Medição de Risco , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia
6.
Radiology ; 296(3): E166-E172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32384019

RESUMO

Background Chest radiography may play an important role in triage for coronavirus disease 2019 (COVID-19), particularly in low-resource settings. Purpose To evaluate the performance of an artificial intelligence (AI) system for detection of COVID-19 pneumonia on chest radiographs. Materials and Methods An AI system (CAD4COVID-XRay) was trained on 24 678 chest radiographs, including 1540 used only for validation while training. The test set consisted of a set of continuously acquired chest radiographs (n = 454) obtained in patients suspected of having COVID-19 pneumonia between March 4 and April 6, 2020, at one center (223 patients with positive reverse transcription polymerase chain reaction [RT-PCR] results, 231 with negative RT-PCR results). Radiographs were independently analyzed by six readers and by the AI system. Diagnostic performance was analyzed with the receiver operating characteristic curve. Results For the test set, the mean age of patients was 67 years ± 14.4 (standard deviation) (56% male). With RT-PCR test results as the reference standard, the AI system correctly classified chest radiographs as COVID-19 pneumonia with an area under the receiver operating characteristic curve of 0.81. The system significantly outperformed each reader (P < .001 using the McNemar test) at their highest possible sensitivities. At their lowest sensitivities, only one reader significantly outperformed the AI system (P = .04). Conclusion The performance of an artificial intelligence system in the detection of coronavirus disease 2019 on chest radiographs was comparable with that of six independent readers. © RSNA, 2020.


Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Curva ROC , SARS-CoV-2 , Tomografia Computadorizada por Raios X
7.
Thorax ; 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602813

RESUMO

BACKGROUND: All lung cancer CT screening trials used fixed follow-up intervals, which may not be optimal. We developed new lung cancer risk models for personalising screening intervals to 1 year or 2 years, and compared these with existing models. METHODS: We included participants in the CT arm of the National Lung Screening Trial (2002-2010) who underwent a baseline scan and a first annual follow-up scan and were not diagnosed with lung cancer in the first year. True and false positives and the area under the curve of each model were calculated. Internal validation was performed using bootstrapping. RESULTS: Data from 24 542 participants were included in the analysis. The accuracy was 0.785, 0.693, 0.697, 0.666 and 0.727 for the polynomial, patient characteristics, diameter, Patz and PanCan models, respectively. Of the 24 542 participants included, 174 (0.71%) were diagnosed with lung cancer between the first and the second annual follow-ups. Using the polynomial model, 2558 (10.4%, 95% CI 10.0% to 10.8%), 7544 (30.7%, 30.2% to 31.3%), 10 947 (44.6%, 44.0% to 45.2%), 16 710 (68.1%, 67.5% to 68.7%) and 20 023 (81.6%, 81.1% to 92.1%) of the 24 368 participants who did not develop lung cancer in the year following the first follow-up screening round could have safely skipped it, at the expense of delayed diagnosis of 0 (0.0%, 0.0% to 2.7%), 8 (4.6%, 2.2% to 9.2%), 17 (9.8%, 6.0% to 15.4%), 44 (25.3%, 19.2% to 32.5%) and 70 (40.2%, 33.0% to 47.9%) of the 174 lung cancers, respectively. CONCLUSIONS: The polynomial model, using both patient characteristics and baseline scan morphology, was significantly superior in assigning participants to 1-year or 2-year screening intervals. Implementing personalised follow-up intervals would enable hundreds of participants to skip a screening round per lung cancer diagnosis delayed.

8.
Thorax ; 73(9): 857-863, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777062

RESUMO

OBJECTIVE: To assess the performance of the Brock malignancy risk model for pulmonary nodules detected in routine clinical setting. METHODS: In two academic centres in the Netherlands, we established a list of patients aged ≥40 years who received a chest CT scan between 2004 and 2012, resulting in 16 850 and 23 454 eligible subjects. Subsequent diagnosis of lung cancer until the end of 2014 was established through linking with the National Cancer Registry. A nested case-control study was performed (ratio 1:3). Two observers used semiautomated software to annotate the nodules. The Brock model was separately validated on each data set using ROC analysis and compared with a solely size-based model. RESULTS: After the annotation process the final analysis included 177 malignant and 695 benign nodules for centre A, and 264 malignant and 710 benign nodules for centre B. The full Brock model resulted in areas under the curve (AUCs) of 0.90 and 0.91, while the size-only model yielded significantly lower AUCs of 0.88 and 0.87, respectively (p<0.001). At 10% malignancy risk, the threshold suggested by the British Thoracic Society, sensitivity of the full model was 75% and 81%, specificity was 85% and 84%, positive predictive values were 14% and 10% at negative predictive value (NPV) of 99%. The optimal threshold was 6% for centre A and 8% for centre B, with NPVs >99%. DISCUSSION: The Brock model shows high predictive discrimination of potentially malignant and benign nodules when validated in an unselected, heterogeneous clinical population. The high NPV may be used to decrease the number of nodule follow-up examinations.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Nódulo Pulmonar Solitário/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Valor Preditivo dos Testes , Curva ROC , Medição de Risco
9.
Radiology ; 288(3): 867-875, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29969076

RESUMO

Purpose To study interreader variability for classifying pulmonary opacities at CT as perifissural nodules (PFNs) and determine how reliably radiologists differentiate PFNs from malignancies. Materials and Methods CT studies were obtained retrospectively from the National Lung Screening Trial (2002-2009). Nodules were eligible for the study if they were noncalcified, solid, within the size range of 5 to 10 mm, and scanned with a section thickness of 2 mm or less. Six radiologists classified 359 nodules in a cancer-enriched data set as PFN, non-PFN, or not applicable. Nodules classified as not applicable by at least three radiologists were excluded, leaving 316 nodules for post-hoc statistical analysis. Results The study group contained 22.2% cancers (70 of 316). The median proportion of nodules classified as PFNs was 45.6% (144 of 316). All six radiologists uniformly classified 17.7% (56 of 316) of the nodules as PFNs. The Fleiss κ was 0.50. Compared with non-PFNs, nodules classified as PFNs were smaller and more often located in the lower lobes and attached to a fissure (P < .001). Thirteen (18.6%) of 70 cancers were misclassified 21 times as PFNs. Individual readers' misclassification rates ranged from 0% (0 of 125) to 4.9% (eight of 163). Of 13 misclassified malignancies, 11 were in the upper lobes and two were attached to a fissure. Conclusion There was moderate interreader agreement when classifying nodules as perifissural nodules. Less than 2.5% of perifissural nodule classifications were misclassified lung cancers (21 of 865) in this cancer-enriched study. Allowing nodules classified as perifissural nodules to be omitted from additional follow-up in a screening setting could substantially reduce the number of unnecessary scans; excluding perifissural nodules in the upper lobes would greatly decrease the misclassification rate.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Diagnóstico Diferencial , Humanos , Pulmão/diagnóstico por imagem , Variações Dependentes do Observador , Estudos Retrospectivos
10.
Eur Respir J ; 51(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29650547

RESUMO

Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Estadiamento de Neoplasias , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , Detecção Precoce de Câncer , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Países Baixos , Sistema de Registros , Software , Nódulo Pulmonar Solitário/patologia
11.
Radiology ; 284(1): 264-271, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28339311

RESUMO

Purpose To evaluate the added value of Lung CT Screening Reporting and Data System (Lung-RADS) assessment category 4X over categories 3, 4A, and 4B for differentiating between benign and malignant subsolid nodules (SSNs). Materials and Methods SSNs on all baseline computed tomographic (CT) scans from the National Lung Cancer Trial that would have been classified as Lung-RADS category 3 or higher were identified, resulting in 374 SSNs for analysis. An experienced screening radiologist volumetrically segmented all solid cores and located all malignant SSNs visible on baseline scans. Six experienced chest radiologists independently determined which nodules to upgrade to category 4X, a recently introduced category for lesions that demonstrate additional features or imaging findings that increase the suspicion of malignancy. Malignancy rates of purely size-based categories and category 4X were compared. Furthermore, the false-positive rates of category 4X lesions were calculated and observer variability was assessed by using Fleiss κ statistics. Results The observers upgraded 15%-24% of the SSNs to category 4X. The malignancy rate for 4X nodules varied from 46% to 57% per observer and was substantially higher than the malignancy rates of categories 3, 4A, and 4B SSNs without observer intervention (9%, 19%, and 23%, respectively). On average, the false-positive rate for category 4X nodules was 7% for category 3 SSNs, 7% for category 4A SSNs, and 19% for category 4B SSNs. Of the falsely upgraded benign lesions, on average 27% were transient. The agreement among the observers was moderate, with an average κ value of 0.535 (95% confidence interval: 0.509, 0.561). Conclusion The inclusion of a 4X assessment category for lesions suspicious for malignancy in a nodule management tool is of added value and results in high malignancy rates in the hands of experienced radiologists. Proof of the transient character of category 4X lesions at short-term follow-up could avoid unnecessary invasive management. © RSNA, 2017.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X/métodos
12.
Eur Radiol ; 27(11): 4672-4679, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28439653

RESUMO

PURPOSE: Lung-RADS proposes malignancy probabilities for categories 2 (<1%) and 4B (>15%). The purpose of this study was to quantify and compare malignancy rates for Lung-RADS 2 and 4B subsolid nodules (SSNs) on a nodule base. METHODS: We identified all baseline SSNs eligible for Lung-RADS 2 and 4B in the National Lung Screening Trial (NLST) database. Solid cores and nodule locations were annotated using in-house software. Malignant SSNs were identified by an experienced radiologist using NLST information. Malignancy rates and percentages of persistence were calculated. RESULTS: Of the Lung-RADS 2SSNs, 94.3% (1790/1897) could be located on chest CTs. Likewise, 95.1% (331/348) of part-solid nodules ≥6 mm in diameter could be located. Of these, 120 had a solid core ≥8 mm, corresponding to category 4B. Category 2 SSNs showed a malignancy rate of 2.5%, exceeding slightly the proposed rate of <1%. Category 4B SSNs showed a malignancy rate of 23.9%. In both categories one third of benign lesions were transient. CONCLUSION: Malignancy probabilities for Lung-RADS 2 and 4B generally match malignancy rates in SSNs. An option to include also category 2 SSNs for upgrade to 4X designed for suspicious nodules might be useful in the future. Integration of short-term follow-up to confirm persistence would prevent unnecessary invasive work-up in 4B SSNs. KEY POINTS: • Malignancy probabilities for Lung-RADS 2/4B generally match malignancy risks in SSNs. • Transient rate between low-risk Lung-RADS 2 and high-risk 4B lesions were similar. • Upgrade of highly suspicious Lung-RADS 2 SSNs to Lung-RADS 4X might be useful. • Up to one third of the benign high-risk Lung-RADS 4B lesions were transient. • Short-term follow-up confirming persistence would avoid unnecessary invasive work-up of 4B lesions.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Bases de Dados Factuais , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Invasividade Neoplásica , Probabilidade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Tomografia Computadorizada por Raios X/métodos
13.
Radiology ; 277(3): 863-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26020438

RESUMO

PURPOSE: To examine the factors that affect inter- and intraobserver agreement for pulmonary nodule type classification on low-radiation-dose computed tomographic (CT) images, and their potential effect on patient management. MATERIALS AND METHODS: Nodules (n = 160) were randomly selected from the Dutch-Belgian Lung Cancer Screening Trial cohort, with equal numbers of nodule types and similar sizes. Nodules were scored by eight radiologists by using morphologic categories proposed by the Fleischner Society guidelines for management of pulmonary nodules as solid, part solid with a solid component smaller than 5 mm, part solid with a solid component 5 mm or larger, or pure ground glass. Inter- and intraobserver agreement was analyzed by using Cohen κ statistics. Multivariate analysis of variance was performed to assess the effect of nodule characteristics and image quality on observer disagreement. Effect on nodule management was estimated by differentiating CT follow-up for ground-glass nodules, solid nodules 8 mm or smaller, and part-solid nodules smaller than 5 mm from immediate diagnostic work-up for solid nodules larger than 8 mm and part-solid nodules 5 mm or greater. RESULTS: Pair-wise inter- and intraobserver agreement was moderate (mean κ, 0.51 [95% confidence interval, 0.30, 0.68] and 0.57 [95% confidence interval, 0.47, 0.71]). Categorization as part-solid nodules and location in the upper lobe significantly reduced observer agreement (P = .012 and P < .001, respectively). By considering all possible reading pairs (28 possible combinations of observer pairs × 160 nodules = 4480 possible agreements or disagreements), a discordant nodule classification was found in 36.4% (1630 of 4480), related to presence or size of a solid component in 88.7% (1446 of 1630). Two-thirds of these discrepant readings (1061 of 1630) would have potentially resulted in different nodule management. CONCLUSION: There is moderate inter- and intraobserver agreement for nodule classification by using current recommendations for low-radiation-dose CT examinations of the chest. Discrepancies in nodule categorization were mainly caused by disagreement on the size and presence of a solid component, which may lead to different management in the majority of cases with such discrepancies. (©) RSNA, 2015.


Assuntos
Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/terapia , Tomografia Computadorizada por Raios X , Humanos , Variações Dependentes do Observador
14.
Eur Respir J ; 45(3): 765-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25431271

RESUMO

Pulmonary subsolid nodules (SSNs) have a high likelihood of malignancy, but are often indolent. A conservative treatment approach may therefore be suitable. The aim of the current study was to evaluate whether close follow-up of SSNs with computed tomography may be a safe approach. The study population consisted of participants of the Dutch-Belgian lung cancer screening trial (Nederlands Leuvens Longkanker Screenings Onderzoek; NELSON). All SSNs detected during the trial were included in this analysis. Retrospectively, all persistent SSNs and SSNs that were resected after first detection were segmented using dedicated software, and maximum diameter, volume and mass were measured. Mass doubling time (MDT) was calculated. In total 7135 volunteers were included in the current analysis. 264 (3.3%) SSNs in 234 participants were detected during the trial. 147 (63%) of these SSNs in 126 participants disappeared at follow-up, leaving 117 persistent or directly resected SSNs in 108 (1.5%) participants available for analysis. The median follow-up time was 95 months (range 20-110 months). 33 (28%) SSNs were resected and 28 of those were (pre-) invasive. None of the non-resected SSNs progressed into a clinically relevant malignancy. Persistent SSNs rarely developed into clinically manifest malignancies unexpectedly. Close follow-up with computed tomography may be a safe option to monitor changes.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Dissecação/métodos , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Nódulos Pulmonares Múltiplos/cirurgia , Países Baixos , Avaliação de Resultados em Cuidados de Saúde , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
15.
Am J Respir Crit Care Med ; 187(8): 848-54, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23348977

RESUMO

RATIONALE: The NELSON (Nederlands Leuvens Longkanker Screenings Onderzoek) trial is, with 15,822 participants, the largest European lung cancer computer tomography screening trial. A volumetry-based screening strategy, stringent criteria for a positive screening, and an increasing length of screening interval are particular features of the NELSON trial. OBJECTIVES: To determine the effect of stringent referral criteria and increasing screening interval on the characteristics of screen-detected lung cancers, and to compare this across screening rounds, between sexes, and with other screening trials. METHODS: All NELSON participants with screen-detected lung cancer in the first three rounds were included. Lung cancer stage at diagnosis, histological subtype, and tumor localization were compared between the screening rounds, the sexes, and with other screening trials. MEASUREMENTS AND MAIN RESULTS: In the first three screening rounds, 200 participants were diagnosed with 209 lung cancers. Of these lung cancers, 70.8% were diagnosed at stage I and 8.1% at stage IIIB-IV, and 51.2% were adenocarcinomas. There was no significant difference in cancer stage, histology, or tumor localization across the screening rounds. Women were diagnosed at a significantly more favorable cancer stage than men. Compared with other trials, the screen-detected lung cancers of the NELSON trial were relatively more often diagnosed at stage I and less often at stage IIIB-IV. CONCLUSIONS: Despite stringent criteria for a positive screening, an increasing length of screening interval, and few female participants, the screening strategy of the NELSON trial resulted in a favorable cancer stage distribution at diagnosis, which is essential for the effectiveness of our screening strategy. Clinical trial registered with www.trialregister.nl (ISRCTN63545820).


Assuntos
Adenocarcinoma/diagnóstico , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Fumar/efeitos adversos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/epidemiologia , Adenocarcinoma/patologia , Distribuição por Idade , Idoso , Bélgica , Detecção Precoce de Câncer/normas , Feminino , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Masculino , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Países Baixos/epidemiologia , Distribuição por Sexo , Fumar/epidemiologia , Tomografia Computadorizada por Raios X
16.
Commun Med (Lond) ; 3(1): 156, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891360

RESUMO

BACKGROUND: Outside a screening program, early-stage lung cancer is generally diagnosed after the detection of incidental nodules in clinically ordered chest CT scans. Despite the advances in artificial intelligence (AI) systems for lung cancer detection, clinical validation of these systems is lacking in a non-screening setting. METHOD: We developed a deep learning-based AI system and assessed its performance for the detection of actionable benign nodules (requiring follow-up), small lung cancers, and pulmonary metastases in CT scans acquired in two Dutch hospitals (internal and external validation). A panel of five thoracic radiologists labeled all nodules, and two additional radiologists verified the nodule malignancy status and searched for any missed cancers using data from the national Netherlands Cancer Registry. The detection performance was evaluated by measuring the sensitivity at predefined false positive rates on a free receiver operating characteristic curve and was compared with the panel of radiologists. RESULTS: On the external test set (100 scans from 100 patients), the sensitivity of the AI system for detecting benign nodules, primary lung cancers, and metastases is respectively 94.3% (82/87, 95% CI: 88.1-98.8%), 96.9% (31/32, 95% CI: 91.7-100%), and 92.0% (104/113, 95% CI: 88.5-95.5%) at a clinically acceptable operating point of 1 false positive per scan (FP/s). These sensitivities are comparable to or higher than the radiologists, albeit with a slightly higher FP/s (average difference of 0.6). CONCLUSIONS: The AI system reliably detects benign and malignant pulmonary nodules in clinically indicated CT scans and can potentially assist radiologists in this setting.


Early-stage lung cancer can be diagnosed after identifying an abnormal spot on a chest CT scan ordered for other medical reasons. These spots or lung nodules can be overlooked by radiologists, as they are not necessarily the focus of an examination and can be as small as a few millimeters. Software using Artificial Intelligence (AI) technology has proven to be successful for aiding radiologists in this task, but its performance is understudied outside a lung cancer screening setting. We therefore developed and validated AI software for the detection of cancerous nodules or non-cancerous nodules that would need attention. We show that the software can reliably detect these nodules in a non-screening setting and could potentially aid radiologists in daily clinical practice.

17.
N Engl J Med ; 361(23): 2221-9, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19955524

RESUMO

BACKGROUND: The use of multidetector computed tomography (CT) in lung-cancer screening trials involving subjects with an increased risk of lung cancer has highlighted the problem for the clinician of deciding on the best course of action when noncalcified pulmonary nodules are detected by CT. METHODS: A total of 7557 participants underwent CT screening in years 1, 2, and 4 of a randomized trial of lung-cancer screening. We used software to evaluate a noncalcified nodule according to its volume or volume-doubling time. Growth was defined as an increase in volume of at least 25% between two scans. The first-round screening test was considered to be negative if the volume of a nodule was less than 50 mm(3), if it was 50 to 500 mm(3) but had not grown by the time of the 3-month follow-up CT, or if, in the case of those that had grown, the volume-doubling time was 400 days or more. RESULTS: In the first and second rounds of screening, 2.6% and 1.8% of the participants, respectively, had a positive test result. In round one, the sensitivity of the screen was 94.6% (95% confidence interval [CI], 86.5 to 98.0) and the negative predictive value 99.9% (95% CI, 99.9 to 100.0). In the 7361 subjects with a negative screening result in round one, 20 lung cancers were detected after 2 years of follow-up. CONCLUSIONS: Among subjects at high risk for lung cancer who were screened in three rounds of CT scanning and in whom noncalcified pulmonary nodules were evaluated according to volume and volume-doubling time, the chances of finding lung cancer 1 and 2 years after a negative first-round test were 1 in 1000 and 3 in 1000, respectively. (Current Controlled Trials number, ISRCTN63545820.)


Assuntos
Pulmão/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Seguimentos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Sensibilidade e Especificidade , Software , Nódulo Pulmonar Solitário/patologia , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral
18.
PLoS One ; 17(7): e0267539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35900979

RESUMO

We propose a deep learning system to automatically detect four explainable emphysema signs on frontal and lateral chest radiographs. Frontal and lateral chest radiographs from 3000 studies were retrospectively collected. Two radiologists annotated these with 4 radiological signs of pulmonary emphysema identified from the literature. A patient with ≥2 of these signs present is considered emphysema positive. Using separate deep learning systems for frontal and lateral images we predict the presence of each of the four visual signs and use these to determine emphysema positivity. The ROC and AUC results on a set of 422 held-out cases, labeled by both radiologists, are reported. Comparison with a black-box model which predicts emphysema without the use of explainable visual features is made on the annotations from both radiologists, as well as the subset that they agreed on. DeLong's test is used to compare with the black-box model ROC and McNemar's test to compare with radiologist performance. In 422 test cases, emphysema positivity was predicted with AUCs of 0.924 and 0.946 using the reference standard from each radiologist separately. Setting model sensitivity equivalent to that of the second radiologist, our model has a comparable specificity (p = 0.880 and p = 0.143 for each radiologist respectively). Our method is comparable with the black-box model with AUCs of 0.915 (p = 0.407) and 0.935 (p = 0.291), respectively. On the 370 cases where both radiologists agreed (53 positives), our model achieves an AUC of 0.981, again comparable to the black-box model AUC of 0.972 (p = 0.289). Our proposed method can predict emphysema positivity on chest radiographs as well as a radiologist or a comparable black-box method. It additionally produces labels for four visual signs to ensure the explainability of the result. The dataset is publicly available at https://doi.org/10.5281/zenodo.6373392.


Assuntos
Aprendizado Profundo , Enfisema , Enfisema Pulmonar , Enfisema/diagnóstico por imagem , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Radiografia , Radiografia Torácica/métodos , Radiologistas , Estudos Retrospectivos
19.
Transl Lung Cancer Res ; 10(5): 2378-2388, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164285

RESUMO

Lung cancer computed tomography (CT) screening trials using low-dose CT have repeatedly demonstrated a reduction in the number of lung cancer deaths in the screening group compared to a control group. With various countries currently considering the implementation of lung cancer screening, recurring discussion points are, among others, the potentially high false positive rates, cost-effectiveness, and the availability of radiologists for scan interpretation. Artificial intelligence (AI) has the potential to increase the efficiency of lung cancer screening. We discuss the performance levels of AI algorithms for various tasks related to the interpretation of lung screening CT scans, how they compare to human experts, and how AI and humans may complement each other. We discuss how AI may be used in the lung cancer CT screening workflow according to the current evidence and describe the additional research that will be required before AI can take a more prominent role in the analysis of lung screening CT scans.

20.
Cancers (Basel) ; 13(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200018

RESUMO

The purpose of this case-cohort study was to investigate whether the frequency and computed tomography (CT) features of pulmonary nodules posed a risk for the future development of lung cancer (LC) at a different location. Patients scanned between 2004 and 2012 at two Dutch academic hospitals were cross-linked with the Dutch Cancer Registry. All patients who were diagnosed with LC by 2014 and a random selection of LC-free patients were considered. LC patients who were determined to be LC-free at the time of the scan and all LC-free patients with an adequate scan were included. The nodule count and types (solid, part-solid, ground-glass, and perifissural) were recorded per scan. Age, sex, and other CT measures were included to control for confounding factors. The cohort included 163 LC patients and 1178 LC-free patients. Cox regression revealed that the number of ground-glass nodules and part-solid nodules present were positively correlated to future LC risk. The area under the receiver operating curve of parsimonious models with and without nodule type information were 0.827 and 0.802, respectively. The presence of subsolid nodules in a clinical setting may be a risk factor for future LC development in another pulmonary location in a dose-dependent manner. Replication of the results in screening cohorts is required for maximum utility of these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA