Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 370(2): 148-159, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31113837

RESUMO

Pharmacokinetic studies in rats and dogs were performed to characterize the in vivo performance of a novel prodrug, fosciclopirox. Ciclopirox olamine (CPX-O) is a marketed topical antifungal agent with demonstrated in vitro and in vivo preclinical anticancer activity in several solid tumor and hematologic malignancies. The oral route of administration for CPX-O is not feasible due to low bioavailability and dose-limiting gastrointestinal toxicities. To enable parenteral administration, the phosphoryl-oxymethyl ester of ciclopirox (CPX), fosciclopirox (CPX-POM), was synthesized and formulated as an injectable drug product. In rats and dogs, intravenous CPX-POM is rapidly and completely metabolized to its active metabolite, CPX. The bioavailability of the active metabolite is complete following CPX-POM administration. CPX and its inactive metabolite, ciclopirox glucuronide (CPX-G), are excreted in urine, resulting in delivery of drug to the entire urinary tract. The absolute bioavailability of CPX following subcutaneous administration of CPX-POM is excellent in rats and dogs, demonstrating the feasibility of this route of administration. These studies confirmed the oral bioavailability of CPX-O is quite low in rats and dogs compared with intravenous CPX-POM. Given its broad-spectrum anticancer activity in several solid tumor and hematologic cancers and renal elimination, CPX-POM is being developed for the treatment of urothelial cancer. The safety, dose tolerance, pharmacokinetics, and pharmacodynamics of intravenous CPX-POM are currently being characterized in a United States multicenter first-in-human Phase 1 clinical trial in patients with advanced solid tumors (NCT03348514).


Assuntos
Ciclopirox/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Urotélio/efeitos dos fármacos , Animais , Disponibilidade Biológica , Cães , Masculino , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Ratos
2.
J Pharm Sci ; 97(12): 5376-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18383338

RESUMO

The pharmacokinetics of DS-96, an N-alkylhomospermine analog designed to sequester bacterial lipopolysaccharides, has been determined in rodent species. The elimination half-life in mice and rats are about 400 and 500 min, respectively, with other PK parameters being quite similar in the two rodent species. Interestingly, the mouse intravenous plasma concentration time curves exhibit an apparent absorption phase. While the rat intravenous data did not exhibit a pronounced apparent absorption phase immediately following injection, plasma levels did increase between 10 and 30 min following an expected drop from time 0 to 5 min. The data are consistent with first-pass uptake, possibly by the lung, with back diffusion as a function of time. The observed C(max) values of 1.36 microg/mL in the mouse intraperitoneal model suggest that a plasma concentration of 0.5-1 microg/mL corresponds to complete protection for a 200 ng/animal dose of intraperitoneally administered LPS in the D-galactosamine-primed model of endotoxin-induced lethality.


Assuntos
Lipopolissacarídeos/metabolismo , Espermina/análogos & derivados , Animais , Espectroscopia de Ressonância Magnética , Camundongos , Ratos , Espermina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA