Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Target Oncol ; 11(2): 149-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26310975

RESUMO

BACKGROUND: BRAF mutations are a validated target for cancer therapy. A second-generation BRAF inhibitor with an improved preclinical safety profile (RG7256) was evaluated in a first-in-man study in order to determine the safety, efficacy, pharmacokinetics and pharmacodynamics in patients with BRAF V600-mutated advanced solid tumors. PATIENTS AND METHODS: Patients received RG7256 orally over 8 dose levels from 200 mg once a day (QD) to 2400 mg twice a day (BID) (50-, 100- and 150-mg tablets) using a classic 3 + 3 dose escalation design. RESULTS: In total, 45 patients were enrolled; most (87 %) had advanced melanoma (94 % BRAF V600E). RG7256 was rapidly absorbed, with limited accumulation and dose-proportional increase in exposure up to 1950 mg BID. The maximal tolerated dose (MTD) was not reached. The most common drug-related adverse events (AEs) were dyspepsia (20 %), dry skin (18 %), rash (18 %), fatigue (16 %) and nausea (13 %), mainly grade 1. Three patients (7 %) developed cutaneous squamous cell carcinoma. Photosensitivity, arthralgia and increased liver enzyme levels were each observed in only one patient each. Of 44 evaluable patients, 14 (32 %) had a partial response (melanoma and thyroid cancer). At high dose levels (>1200 mg BID), 10 of 16 (63 %) patients had a partial response. A decrease in maximum standardized uptake value (SUVmax) on FDG-PET of ≥25 % was observed in 19 of 37 patients. On-treatment reductions in pERK were documented in eight of ten paired tumor samples. CONCLUSIONS: RG7256 has a favorable safety profile compared to other BRAF inhibitors while maintaining clinical activity, and MTD was not reached. The excessive pill burden needed to provide the desired exposure, and thus concerns about patient compliance, limited further development of this agent. Study Identifier: ClinicalTrials.gov (NCT01143753).


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Adulto , Idoso , Relação Dose-Resposta a Droga , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Pessoa de Meia-Idade , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas B-raf/genética , Compostos Radiofarmacêuticos/farmacocinética , Resultado do Tratamento , Adulto Jovem
2.
Clin Cancer Res ; 22(4): 858-67, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26446946

RESUMO

PURPOSE: The TWEAK-Fn14 pathway represents a novel anticancer target that is being actively investigated. Understanding the relationship between pharmacokinetics of anti-TWEAK therapeutics and tumor pharmacodynamics is critical. We investigated exposure-response relationships of RG7212, an anti-TWEAK mAb, in patients with Fn14-expressing tumors. EXPERIMENTAL DESIGN: Patients with Fn14-positive tumors (IHC ≥ 1+) treated in a phase I first-in-human study with ascending doses of RG7212 were the basis for this analysis. Pharmacokinetics of RG7212 and dynamics of TWEAK were determined, as were changes in tumor TWEAK-Fn14 signaling in paired pre- and posttreatment tumor biopsies. The objectives of the analysis were to define exposure-response relationships and the relationship between pretreatment tumor Fn14 expression and pharmacodynamic effect. Associations between changes in TWEAK-Fn14 signaling and clinical outcome were explored. RESULTS: Thirty-six patients were included in the analysis. RG7212 reduced plasma TWEAK to undetectable levels at all observed RG7212 exposures. In contrast, reductions in tumor Fn14 and TRAF1 protein expression were observed only at higher exposure (≥ 300 mg*h/mL). Significant reductions in tumor Ki-67 expression and early changes in serum concentrations of CCL-2 and MMP-9 were observed exclusively in patients with higher drug exposure who had high pretreatment tumor Fn14 expression. Pretreatment tumor Fn14 expression was not associated with outcome, but a trend toward longer time on study was observed with high versus low RG7212 exposure. CONCLUSIONS: RG7212 reduced tumor TWEAK-Fn14 signaling in a systemic exposure-dependent manner. In addition to higher exposure, relatively high Fn14 expression might be required for pharmacodynamic effect of anti-TWEAK monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/tratamento farmacológico , Receptores do Fator de Necrose Tumoral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Quimiocina CCL2/sangue , Neoplasias Colorretais/sangue , Citocina TWEAK , Feminino , Expressão Gênica , Humanos , Masculino , Metaloproteinase 9 da Matriz/sangue , Dose Máxima Tolerável , Pessoa de Meia-Idade , Receptores do Fator de Necrose Tumoral/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Receptor de TWEAK , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral , Adulto Jovem
3.
Clin Cancer Res ; 21(2): 258-66, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25388164

RESUMO

PURPOSE: Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible molecule 14 (Fn14) are a ligand-receptor pair frequently overexpressed in solid tumors. TWEAK: Fn14 signaling regulates multiple oncogenic processes through MAPK, AKT, and NFκB pathway activation. A phase I study of RG7212, a humanized anti-TWEAK IgG1κ monoclonal antibody, was conducted in patients with advanced solid tumors expressing Fn14. EXPERIMENTAL DESIGN: Dose escalations, over a 200- to 7,200-mg range, were performed with patients enrolled in weekly (QW), bi-weekly (Q2W), or every-three-week (Q3W) schedules. Primary objectives included determination of dose and safety profile. Secondary endpoints included assessments related to inhibition of TWEAK: Fn14 signaling, tumor proliferation, tumor immune cell infiltration, and pharmacokinetics. RESULTS: In 192 treatment cycles administered to 54 patients, RG7212 was well-tolerated with no dose-limiting toxicities observed. More than 95% of related adverse events were limited to grade 1/2. Pharmacokinetics were dose proportional for all cohorts, with a t1/2 of 11 to 12 days. Pharmacodynamic changes included clearance of free and total TWEAK ligand and reductions in tumor Ki-67 and TRAF1. A patient with BRAF wild-type melanoma who received 36 weeks of RG7212 therapy had tumor regression and pharmacodynamic changes consistent with antitumor effects. Fifteen patients (28%) received 16 or more weeks of RG7212 treatment. CONCLUSION: RG7212 demonstrated excellent tolerability and favorable pharmacokinetics. Pharmacodynamic endpoints were consistent with reduced TWEAK: Fn14 signaling. Tumor regression was observed and prolonged stable disease was demonstrated in multiple heavily pretreated patients with solid tumors. These encouraging results support further study of RG7212. Clin Cancer Res; 21(2); 258-66. ©2014 AACR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Melanoma/tratamento farmacológico , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacocinética , Neoplasias Colorretais/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Dose Máxima Tolerável , Melanoma/diagnóstico por imagem , Pessoa de Meia-Idade , Cintilografia , Compostos Radiofarmacêuticos , Resultado do Tratamento
4.
Clin Cancer Res ; 19(20): 5686-98, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23974006

RESUMO

PURPOSE: To explore the role of TWEAK in tumor growth and antitumor immune response and the activity and mechanism of RG7212, an antagonistic anti-TWEAK antibody, in tumor models. EXPERIMENTAL DESIGN: TWEAK-induced signaling and gene expression were explored in tumor cell lines and inhibition of these effects and antitumor efficacy with RG7212 treatment was assessed in human tumor xenograft-, patient-derived xenograft, and syngeneic tumor models and phase I patients. Genetic features correlated with antitumor activity were characterized. RESULTS: In tumor cell lines, TWEAK induces proliferation, survival, and NF-κB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. TWEAK-inducible CD274, CCL2, CXCL-10 and -11 modulate T-cell and monocyte recruitment, T-cell activation, and macrophage differentiation. These factors and TWEAK-induced signaling were decreased, and tumor, blood, and spleen immune cell composition was altered with RG7212 treatment in mice. RG7212 inhibits tumor growth in vivo in models with TWEAK receptor, Fn14, expression, and markers of pathway activation. In phase I testing, signs of tumor shrinkage and stable disease were observed without dose-limiting toxicity. In a patient with advanced, Fn14-positive, malignant melanoma with evidence of tumor regression, proliferation markers were dramatically reduced, tumor T-cell infiltration increased, and tumor macrophage content decreased. Antitumor activity, a lack of toxicity in humans and animals and no evidence of antagonism with standard of care or targeted agents in mice, suggests that RG7212 is a promising agent for use in combination therapies in patients with Fn14-positive tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocina TWEAK , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 72(3): 779-89, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22180495

RESUMO

The protein kinase BRAF is a key component of the RAS-RAF signaling pathway which plays an important role in regulating cell proliferation, differentiation, and survival. Mutations in BRAF at codon 600 promote catalytic activity and are associated with 8% of all human (solid) tumors, including 8% to 10% of colorectal cancers (CRC). Here, we report the preclinical characterization of vemurafenib (RG7204; PLX4032; RO5185426), a first-in-class, specific small molecule inhibitor of BRAF(V600E) in BRAF-mutated CRC cell lines and tumor xenograft models. As a single agent, vemurafenib shows dose-dependent inhibition of ERK and MEK phosphorylation, thereby arresting cell proliferation in BRAF(V600)-expressing cell lines and inhibiting tumor growth in BRAF(V600E) bearing xenograft models. Because vemurafenib has shown limited single-agent clinical activity in BRAF(V600E)-mutant metastatic CRC, we therefore explored a range of combination therapies, with both standard agents and targeted inhibitors in preclinical xenograft models. In a BRAF-mutant CRC xenograft model with de novo resistance to vemurafenib (RKO), tumor growth inhibition by vemurafenib was enhanced by combining with an AKT inhibitor (MK-2206). The addition of vemurafenib to capecitabine and/or bevacizumab, cetuximab and/or irinotecan, or erlotinib resulted in increased antitumor activity and improved survival in xenograft models. Together, our findings suggest that the administration of vemurafenib in combination with standard-of-care or novel targeted therapies may lead to enhanced and sustained clinical antitumor efficacy in CRCs harboring the BRAF(V600E) mutation.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Indóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Área Sob a Curva , Bevacizumab , Western Blotting , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Capecitabina , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib , Fluoruracila/administração & dosagem , Fluoruracila/análogos & derivados , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Indóis/farmacocinética , Irinotecano , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Quinazolinas/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética , Vemurafenib
6.
Cancer Res ; 72(4): 969-78, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22205714

RESUMO

A high percentage of patients with BRAF(V600E) mutant melanomas respond to the selective RAF inhibitor vemurafenib (RG7204, PLX4032) but resistance eventually emerges. To better understand the mechanisms of resistance, we used chronic selection to establish BRAF(V600E) melanoma clones with acquired resistance to vemurafenib. These clones retained the V600E mutation and no second-site mutations were identified in the BRAF coding sequence. Further characterization showed that vemurafenib was not able to inhibit extracellular signal-regulated kinase phosphorylation, suggesting pathway reactivation. Importantly, resistance also correlated with increased levels of RAS-GTP, and sequencing of RAS genes revealed a rare activating mutation in KRAS, resulting in a K117N change in the KRAS protein. Elevated levels of CRAF and phosphorylated AKT were also observed. In addition, combination treatment with vemurafenib and either a MAP/ERK kinase (MEK) inhibitor or an AKT inhibitor synergistically inhibited proliferation of resistant cells. These findings suggest that resistance to BRAF(V600E) inhibition could occur through several mechanisms, including elevated RAS-GTP levels and increased levels of AKT phosphorylation. Together, our data implicate reactivation of the RAS/RAF pathway by upstream signaling activation as a key mechanism of acquired resistance to vemurafenib, in support of clinical studies in which combination therapy with other targeted agents are being strategized to combat resistance.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Sulfonamidas/uso terapêutico , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imidazolidinas/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos SCID , Mutação , Fenilbutiratos/administração & dosagem , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais/efeitos dos fármacos , Transfecção , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res ; 70(13): 5518-27, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20551065

RESUMO

The BRAF(V600E) mutation is common in several human cancers, especially melanoma. RG7204 (PLX4032) is a small-molecule inhibitor of BRAF(V600E) kinase activity that is in phase II and phase III clinical testing. Here, we report a preclinical characterization of the antitumor activity of RG7204 using established in vitro and in vivo models of malignant melanoma. RG7204 potently inhibited proliferation and mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase and ERK phosphorylation in a panel of tumor cell lines, including melanoma cell lines expressing BRAF(V600E) or other mutant BRAF proteins altered at codon 600. In contrast, RG7204 lacked activity in cell lines that express wild-type BRAF or non-V600 mutations. In several tumor xenograft models of BRAF(V600E)-expressing melanoma, we found that RG7204 treatment caused partial or complete tumor regressions and improved animal survival, in a dose-dependent manner. There was no toxicity observed in any dose group in any of the in vivo models tested. Our findings offer evidence of the potent antitumor activity of RG7204 against melanomas harboring the mutant BRAF(V600E) gene.


Assuntos
Indóis/farmacologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Nus , Mutação , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA