Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 28(8): 1058-1073, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613883

RESUMO

The interleukin 7 receptor (IL7R) is strongly associated with increased risk to develop multiple sclerosis (MS), an autoimmune disease of the central nervous system, and this association is likely driven by up-regulation of the soluble isoform of IL7R (sIL7R). Expression of sIL7R is determined by exclusion of the alternative exon 6 from IL7R transcripts, and our previous work revealed that the MS risk allele of the SNP rs6897932 within this exon enhances the expression of sIL7R by promoting exclusion of exon 6. sIL7R potentiates the activity of IL7, leading to enhanced expansion of T cells and increased disability in the experimental autoimmune encephalomyelitis (EAE) murine model of MS. This role in modulating T cell-driven immunity positions sIL7R as an attractive therapeutic target whose expression could be reduced for treatment of MS or increased for treatment of cancers. In this study, we identified novel antisense oligonucleotides (ASOs) that effectively control the inclusion (anti-sIL7R ASOs) or exclusion (pro-sIL7R ASOs) of this exon in a dose-dependent fashion. These ASOs provided excellent control of exon 6 splicing and sIL7R secretion in human primary CD4+ T cells. Supporting their potential for therapeutic targeting, we showed that lead anti-sIL7R ASOs correct the enhanced exon 6 exclusion imposed by the MS risk allele of rs6897932, whereas lead pro-sIL7R ASOs phenocopy it. The data presented here form the foundation for future preclinical studies that will test the therapeutic potential of these ASOs in MS and immuno-oncology.


Assuntos
Linfócitos T CD4-Positivos , Esclerose Múltipla , Receptores de Interleucina-7 , Animais , Éxons , Humanos , Camundongos , Esclerose Múltipla/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA , Receptores de Interleucina-7/genética , Linfócitos T
2.
RNA ; 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568552

RESUMO

Interleukin 7 receptor α-chain is crucial for the development and maintenance of T cells and is genetically associated with autoimmune disorders including multiple sclerosis (MS), a demyelinating disease of the CNS. Exon 6 of IL7R encodes for the transmembrane domain of the receptor and is regulated by alternative splicing: inclusion or skipping of IL7R exon 6 results in membrane-bound or soluble IL7R isoforms, respectively. We previously identified a SNP (rs6897932) in IL7R exon 6, strongly associated with MS risk and showed that the risk allele (C) increases skipping of the exon, resulting in elevated levels of sIL7R. This has important pathological consequences as elevated levels of sIL7R has been shown to exacerbate the disease in the experimental autoimmune encephalomyelitis mouse model of MS. Understanding the regulation of exon 6 splicing provides important mechanistic insights into the pathogenesis of MS. Here we report two mechanisms by which IL7R exon 6 is controlled. First, a competition between PTBP1 and U2AF2 at the polypyrimidine tract (PPT) of intron 5, and second, an unexpected U2AF2-mediated assembly of spicing factors in the exon. We noted the presence of a branchpoint sequence (BPS) (TACTAAT or TACTAAC) within exon 6, which is stronger with the C allele. We also noted that the BPS is followed by a PPT and conjectured that silencing could be mediated by the binding of U2AF2 to that tract. In support of this model, we show that evolutionary conservation of the exonic PPT correlates well with the degree of alternative splicing of exon 6 in two non-human primate species and that U2AF2 binding to this PPT recruits U2 snRNP components to the exon. These observations provide the first explanation for the stronger silencing of IL7R exon 6 with the disease associated C allele at rs6897932.

3.
RNA Biol ; 18(5): 640-646, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33280511

RESUMO

Here we review data suggestive of a role for RNA-binding proteins in vertebrate immunity. We focus on the products of genes found in the class III region of the Major Histocompatibility Complex. Six of these genes, DDX39B (aka BAT1), DXO, LSM2, NELFE, PRRC2A (aka BAT2), and SKIV2L, encode RNA-binding proteins with clear roles in post-transcriptional gene regulation and RNA surveillance. These genes are likely to have important functions in immunity and are associated with autoimmune diseases.


Assuntos
Antígenos de Histocompatibilidade/metabolismo , Imunidade/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Regulação da Expressão Gênica/genética , Antígenos HLA/genética , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade/genética , Humanos , Imunidade/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Proteínas de Ligação a RNA/genética
4.
Elife ; 122023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261960

RESUMO

Genes associated with increased susceptibility to multiple sclerosis (MS) have been identified, but their functions are incompletely understood. One of these genes codes for the RNA helicase DExD/H-Box Polypeptide 39B (DDX39B), which shows genetic and functional epistasis with interleukin-7 receptor-α gene (IL7R) in MS-risk. Based on evolutionary and functional arguments, we postulated that DDX39B enhances immune tolerance thereby decreasing MS risk. Consistent with such a role we show that DDX39B controls the expression of many MS susceptibility genes and important immune-related genes. Among these we identified Forkhead Box P3 (FOXP3), which codes for the master transcriptional factor in CD4+/CD25+ T regulatory cells. DDX39B knockdown led to loss of immune-regulatory and gain of immune-effector expression signatures. Splicing of FOXP3 introns, which belong to a previously unrecognized type of introns with C-rich polypyrimidine tracts, was exquisitely sensitive to DDX39B levels. Given the importance of FOXP3 in autoimmunity, this work cements DDX39B as an important guardian of immune tolerance.


Assuntos
Esclerose Múltipla , Linfócitos T Reguladores , Humanos , Splicing de RNA , Regulação da Expressão Gênica , Esclerose Múltipla/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA