Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chemphyschem ; 24(18): e202300197, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402703

RESUMO

The porous transport layer (PTL) plays an integral role for the mass transport in polymer electrolyte membrane (PEM) electrolyzers. In this work, a stochastic reconstruction method of titanium felt-based PTLs is applied and combined with the Lattice Boltzmann method (LBM). The aim is to parametrically investigate the impact of different PTL structures on the transport of oxygen. The structural characteristics of a reconstructed PTL agree well with experimental investigations. Moreover, the impact of PTL porosity, fiber radius, and anisotropy parameter on the structural characteristics of PTLs are analyzed, and their impact on oxygen transport are elucidated by LBM. Eventually, a customized graded PTL is reconstructed, exhibiting almost optimal mass transport performance for the removal of oxygen. The results show that a higher porosity, larger fiber radius, and smaller anisotropy parameter facilitate the formation of oxygen propagation pathways. By tailoring the fiber characteristics and thus optimizing the PTLs, guidelines for the optimal design and manufacturing can be obtained for large-scale PTLs for electrolyzers.

2.
Chem Rev ; 121(20): 12445-12464, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319075

RESUMO

Rechargeable metal/O2 batteries have long been considered a promising future battery technology in automobile and stationary applications. However, they suffer from poor cyclability and rapid degradation. A recent hypothesis is the formation of singlet oxygen (1O2) as the root cause of these issues. Validation, evaluation, and understanding of the formation of 1O2 are therefore essential for improving metal/O2 batteries. We review literature and use Marcus theory to discuss the possibility of singlet oxygen formation in metal/O2 batteries as a product from (electro)chemical reactions. We conclude that experimental evidence is yet not fully conclusive, and side reactions can play a major role in verifying the existence of singlet oxygen. Following an in-depth analysis based on Marcus theory, we conclude that 1O2 can only originate from a chemical step. A direct electrochemical generation, as proposed by others, can be excluded on the basis of theoretical arguments.


Assuntos
Oxigênio , Oxigênio Singlete , Fontes de Energia Elétrica , Metais
3.
Angew Chem Int Ed Engl ; 62(7): e202213228, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416271

RESUMO

Lithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li6 PS5 Cl and Li5.5 PS4.5 Cl1.5 to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth. Electrochemical measurements, gas analysis and time-of-flight secondary ion mass spectrometry indicate that the Li5.5 PS4.5 Cl1.5 shows pronounced electrochemical decomposition at lower potentials. The chemical reaction at higher voltages leads to more gaseous degradation products, but a lower fraction of solid oxygenated phosphorous and sulfur species. This in turn leads to a decreased interfacial resistance and thus a higher cell performance.

4.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971430

RESUMO

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Assuntos
Antagonistas de Leucotrienos/farmacologia , Leucotrienos , Nanopartículas/química , Animais , Feminino , Voluntários Saudáveis , Humanos , Leucotrienos/biossíntese , Leucotrienos/metabolismo , Masculino , Camundongos
5.
Angew Chem Int Ed Engl ; 61(42): e202210671, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35983847

RESUMO

The {Ru(NO)2 }10 dinitrosylruthenium complex [Ru(NO)2 (PPh3 )2 ] (1) shows photo-induced linkage isomerism (PLI) of a special kind: the two NO ligands switch, on photo-excitation, synchronously from the ground state (GS) with two almost linear RuNO functions to a metastable state (MS) which persists up to 230 K and can be populated to ≈50 %. The MS was experimentally characterised by photo-crystallography, IR spectroscopy and DS-calorimetry as a double-bent variant of the double-linear GS. The experimental results are confirmed by computation which unravels the GS/MS transition as a disrotatory synchronous 50° turn of the two nitrosyl ligands. Although 1 shows the usual redshift of the N-O stretch on bending the MNO unit, there is no increased charge transfer from Ru to NO along the GS-to-MS path. In terms of the effective-oxidation-state (EOS) method, both isomers of 1 and the transition state are Ru-II (NO+ )2 species.


Assuntos
Rutênio , Cristalografia por Raios X , Isomerismo , Ligantes , Óxido Nítrico/química , Rutênio/química
6.
Inorg Chem ; 60(21): 15980-15996, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612642

RESUMO

Among the isoelectronic ligands CN-, CO, and NO+, an oblique bonding to the metal is well-established for the nitrosyl ligand, with M-N-O angles down to ≈120°. In the last decades, the nitrosyl community got into the habit of addressing a bent-bonded nitrosyl ligand as 1NO-. Thus, because various redox forms of a nitrosyl ligand seem to exist, the ligand is considered to be "noninnocent" because of the obvious ambiguity of an oxidation state (OS) assignment of the ligand and metal. Among the bent-bonded species, the low-spin {CoNO}8 class is prototypic. From this class, some 20 new nitrosyl compounds, the X-ray structure determinations of which comply with strict quality criteria, were analyzed with respect to the OS issue. As a result, the effective OS method shows a low-spin d8 CoI-NO+ couple instead of a negative OS of the ligand at the BP86/def2-TZVP (+D3, +CPCM with infinite permittivity) level of theory. The same holds for some new members of the linear subclass of {CoNO}8 compounds. For all compounds, a largely invariable "real" charge of ≈ -0.3 e was obtained from population analyses. All of these electron-rich d8 species strive to manage Pauli repulsion between the metal electrons and the lone pair at the nitrosyl's nitrogen atom, with the bending of the CoNO unit as the most frequent escape.

7.
Chemistry ; 26(11): 2395-2404, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647142

RESUMO

Recent experimental investigations demonstrated the generation of singlet oxygen during charging at high potentials in lithium/oxygen batteries. To contribute to the understanding of the underlying chemical reactions a key step in the mechanism of the charging process, namely, the dissociation of the intermediate lithium superoxide to oxygen and lithium, was investigated. Therefore, the corresponding dissociation paths of the molecular model system lithium superoxide (LiO2 ) were studied by CASSCF/CASPT2 calculations. The obtained results indicate the presence of different dissociation paths over crossing points of different electronic states, which lead either to the energetically preferred generation of triplet oxygen or the energetically higher lying formation of singlet oxygen. The dissociation to the corresponding superoxide anion is energetically less preferred. The understanding of the detailed reaction mechanism allows the design of strategies to avoid the formation of singlet oxygen and thus to potentially minimize the degradation of materials in alkali metal/oxygen batteries. The calculations demonstrate a qualitatively similar but energetically shifted behavior for the homologous alkali metals sodium and potassium and their superoxide species. Fundamental differences were found for the covalently bound hydroperoxyl radical.

8.
Angew Chem Int Ed Engl ; 59(30): 12381-12386, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32339395

RESUMO

Nitrosyl-metal bonding relies on the two interactions between the pair of N-O-π* and two of the metal's d orbitals. These (back)bonds are largely covalent, which makes their allocation in the course of an oxidation-state determination ambiguous. However, apart from M-N-O-angle or net-charge considerations, IUPAC's "ionic approximation" is a useful tool to reliably classify nitrosyl metal complexes in an orbital-centered approach.

9.
Angew Chem Int Ed Engl ; 55(15): 4640-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26970321

RESUMO

Rechargeable lithium-oxygen and sodium-oxygen cells have been considered as challenging concepts for next-generation batteries, both scientifically and technologically. Whereas in the case of non-aqueous Li/O2 batteries, the occurring cell reaction has been unequivocally determined (Li2O2 formation), the situation is much less clear in the case of non-aqueous Na/O2 cells. Two discharge products, with almost equal free enthalpies of formation but different numbers of transferred electrons and completely different kinetics, appear to compete, namely NaO2 and Na2O2. Cells forming either the superoxide or the peroxide have been reported, but it is unclear how the cell reaction can be influenced for selective one- or two-electron transfer to occur. In this Minireview, we summarize available data, discuss important control parameters, and offer perspectives for further research. Water and proton sources appear to play major roles.

10.
Phys Chem Chem Phys ; 17(47): 31769-79, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26563563

RESUMO

The development of aprotic lithium-oxygen (Li-O2) batteries suffers from high charging overvoltages. Dissolved redox mediators, like nitroxides, providing increased energy efficiency and longer lifetime are promising tools to overcome this challenge. Since this auspicious concept is still in its infancy, the underlying chemical reactions as well as the impact of the different (electro)chemical parameters are poorly understood. Herein, we derive an electrochemical model for the charging reactions, which is validated by potentiostatic measurements. The model elucidates the impact of the major factors including basic cell parameters and the chemical properties of the redox mediator. The model is applied to the promising class of nitroxides, which is systematically investigated by using derivatives of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy), AZADO (2-azaadamantane-N-oxyl), and an azaphenalene based nitroxide. The nitroxides are electrochemically characterized by cyclic voltammetry and their performance as redox mediators is studied in Li-O2 batteries with an ether-based electrolyte. Based on the presented model, the charging profiles of the different nitroxide redox mediators are correlated with their molecular structures.

11.
Phys Chem Chem Phys ; 16(40): 22273-80, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25220061

RESUMO

A novel combination of in operando X-ray tomography and model-based analysis of zinc air batteries is introduced. Using this approach the correlation between the three-dimensional morphological properties of the electrode - on the one hand - and the electrochemical properties of the battery - on the other hand is revealed. In detail, chemical dissolution of zinc particles and the electrode volume were investigated non-destructively during battery operation by X-ray tomography (applying a spatial resolution of 9 µm), while simulation yielded cell potentials of each electrode and allows for the prediction of long-term operation behavior. Furthermore, the analysis of individual zinc particles revealed an electrochemical dissolution process that can be explained using an adapted shrinking-core model.

12.
Clin Pract Cases Emerg Med ; 8(2): 95-98, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38869327

RESUMO

Introduction: Spontaneous esophageal rupture, or Boerhaave syndrome, and upside-down stomach are rare pathologies associated with grave sequelae. Boerhaave syndrome can have a mortality rate as high as 44%. Upside-down stomach accounts for less than 5% of hiatal hernias and can lead to incarceration and volvulus. Case Report: An 80-year-old woman presented to the emergency department with sudden onset, severe epigastric pain. Physical examination revealed normal vital signs with mild epigastric tenderness. Imaging obtained revealed a large hiatal hernia and findings concerning for esophageal perforation. The patient was started on 3.375 grams of intravenous piperacillin/tazobactam, and transfer to a tertiary care facility was initiated. After transfer, esophagography confirmed a perforation near the gastroesophageal junction and findings consistent with an upside-down stomach. The patient underwent successful repair of the esophageal perforation and gastropexy followed by intensive care unit admission and ultimately discharge. Conclusion: Boerhaave syndrome and upside-down stomach are two conditions with high associated morbidity and mortality requiring prompt intervention. Information obtained in the history and physical examination including acute onset of chest pain after vomiting, tachypnea, subcutaneous emphysema, and hypoxia can assist in the diagnosis of the described pathologies. These signs and symptoms can be subtle on examination but are important in raising clinical suspicion for an otherwise rare etiology for acute onset chest pain.

13.
ChemSusChem ; : e202400550, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772010

RESUMO

Non-aqueous organic redox flow batteries (RFB) utilizing verdazyl radicals are increasingly explored as energy storage technology. Verdazyl cations in RFBs with acidic aqueous electrolytes, however, have not been investigated yet. To advance the application in aqueous RFBs it is crucial to examine the interaction with the utilized membranes. Herein, the interactions between the 1,3,5-triphenylverdazyl cation and commercial Nafion 211 and self-casted polybenzimidazole (PBI) membranes are systematically investigated to improve the performance in RFBs. The impact of polymer backbones is studied by using mPBI and OPBI as well as different pre-treatments with KOH and H3PO4. Nafion 211 shows substantial absorption of the 1,3,5-triphenylverdazylium cation resulting in loss of conductivity. In contrast, mPBI and OPBI are chemically stable against the verdazylium cation without noticeable absorption. Pre-treatment with KOH leads to a significant increase in ionic conductivity as well as low absorption and permeation of the verdazylium cation. Symmetrical RFB cell tests on lab-scale highlight the beneficial impact of PBI membranes in terms of capacity retention and I-V curves over Nafion 211. With only 2 % d-1 capacity fading 1,3,5-triphenylverdazyl cations in acidic electrolytes with low-cost PBI based membranes exhibit a higher cycling stability compared to state-of-the-art batteries using verdazyl derivatives in non-aqueous electrolytes.

14.
ACS Appl Mater Interfaces ; 16(20): 26195-26208, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722801

RESUMO

To complement or outperform lithium-ion batteries with liquid electrolyte as energy storage devices, a high-energy as well as high-power anode material must be used in solid-state batteries. An overlooked class of anode materials is the one of conversion/alloy active materials (e.g., SnO2, which is already extensively studied in liquid electrolyte-based batteries). Conversion/alloy active materials offer high specific capacities and often also fast lithium-ion diffusion and reaction kinetics, which are required for high C-rates and application in high-energy and high-power devices such as battery electric vehicles. To date, there are only very few reports on conversion/alloy active materials─namely, SnO2─as anode material in sulfide-based solid-state batteries, with a relatively complex electrode design. Otherwise, conversion-alloy active materials are used as a seed layer or interlayer for a homogeneous Li deposition or to mitigate the formation and growth of the SEI, respectively. Within this work, four different conversion/alloy active materials─SnO2, Sn0.9Fe0.1O2, ZnO, and Zn0.9Fe0.1O─are synthesized and incorporated as negative active materials ("anodes") in composite electrodes into SSBs with Li6PS5Cl as solid electrolyte. The structure and the microstructure of the as-synthesized active materials and composite electrodes are investigated by XRD, SEM, and FIB-SEM. All active materials are evaluated based on their C-rate performance and long-term cyclability by galvanostatic cycling under a constant pressure of 40 MPa. Furthermore, light is shed on the degradation processes that take place at the interface between the active material and solid electrolyte. It is evidenced that the decomposition of Li6PS5Cl to LiCl, Li2S, and Li3P at the anode is amplified by Fe substitution. Lastly, a 2D sheet electrode is designed and cycled to tackle the interfacial degradation processes. This approach leads to an improved C-rate performance (factor of 3) as well as long-term cyclability (factor of 2.3).

15.
JAC Antimicrob Resist ; 6(1): dlae002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304725

RESUMO

Introduction: Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global public health concern and enhanced global gonococcal AMR surveillance is imperative. As in many African countries, regular, representative and quality-assured gonococcal AMR is lacking in Ethiopia. We describe the AMR in gonococcal isolates from five cities across Ethiopia, 2021-22, and patient epidemiological data. Methods: Urethral discharge from males and cervical discharge from females were collected from October 2021 to September 2022. Epidemiological data were collected using a questionnaire. MIC determination (ETEST; eight antimicrobials) was performed on gonococcal isolates and EUCAST breakpoints (v13.1) were used. Results: From 1142 urogenital swab samples, 299 species-identified gonococcal isolates were identified; 78.3% were from males and 21.7% from females. The median age for males and females was 25 and 23 years, respectively. Most isolates (61.2%) were identified in Addis Ababa, followed by Gondar (11.4%), Adama (10.4%), Bahir Dar (10.0%) and Jimma (7.0%). The resistance level to ciprofloxacin, tetracycline and benzylpenicillin was 97.0%, 97.0% and 87.6%, respectively, and 87.6% of isolates were producing ß-lactamase. All isolates were susceptible to ceftriaxone, cefixime, azithromycin and spectinomycin. Recommended therapy [ceftriaxone (250 mg) plus azithromycin (1 g)] was used for 84.2% of patients. Conclusions: We present the first national quality-assured gonococcal AMR data from Ethiopia. Resistance levels to ciprofloxacin, tetracycline and benzylpenicillin were exceedingly high. However, all isolates were susceptible to ceftriaxone, cefixime, azithromycin and spectinomycin. In Ethiopia, it is essential to strengthen the gonococcal AMR surveillance by including further epidemiological data, more isolates from different cities, and WGS.

16.
ACS Appl Mater Interfaces ; 15(46): 54129-54142, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948676

RESUMO

The porous transport layer (PTL) in polymer electrolyte membrane (PEM) electrolyzers governs the overall efficiency. Its structural, thermal, and electronic properties determine how effortlessly the gases can be produced and can exit the PEM electrolyzer. In this study, we apply a stochastic reconstruction method for titanium felt-based PTLs to generate PTLs with different porosity, fiber radii, and anisotropy parameters. The morphology and topology of these PTLs are numerically characterized, and transport properties, such as gas diffusion coefficients and electrical and thermal conductivity, are computed via pore-scale modeling. Customized graded PTLs are proposed, exhibiting the optimal topology and bulk structure for the removal of gases, the conductance of electrons, and the transport of heat. The results indicate that the surface and transport properties of PTLs can be tailored by certain morphology parameters: PTLs with lower porosity and smaller fiber radii feature a more sufficient interfacial contact and superior electrical and thermal conductivity. Lowering the anisotropy parameters of PTLs results in a slight loss of interfacial contact but a substantial increase in the electrical and thermal conductivity in the through-plane direction. We outline that the design of PTLs should be differentiated depending on the operating conditions of electrolyzers. For nonstarvation conditions, PTLs should feature low porosity and small fiber radii, whereas for starvation conditions, PTLs should feature high porosity, low anisotropy parameters, and small fiber radii. Furthermore, graded PTLs with enhanced structural and transport properties can be developed by customizing the porosity, fiber radius, and fiber orientation.

17.
Nat Commun ; 14(1): 6672, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865696

RESUMO

Flow batteries are one option for future, low-cost stationary energy storage. We present a perspective overview of the potential cost of organic active materials for aqueous flow batteries based on a comprehensive mathematical model. The battery capital costs for 38 different organic active materials, as well as the state-of-the-art vanadium system are elucidated. We reveal that only a small number of organic molecules would result in costs close to the vanadium reference system. We identify the most promising candidate as the phenazine 3,3'-(phenazine-1,6-diylbis(azanediyl))dipropionic acid) [1,6-DPAP], suggesting costs even below that of the vanadium reference. Additional cost-saving potential can be expected by mass production of these active materials; major benefits lie in the reduced electrolyte costs as well as power costs, although plant maintenance is a major challenge when applying organic materials. Moreover, this work is designed to be expandable. The developed calculation tool (ReFlowLab) accompanying this publication is open for updates with new data.

18.
Methods Mol Biol ; 2589: 129-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255622

RESUMO

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.


Assuntos
Inibidores de Histona Desacetilases , Nanopartículas , Inibidores de Histona Desacetilases/farmacologia , Ácido Valproico/farmacologia , Portadores de Fármacos , Celulose
19.
JMIR Med Inform ; 9(7): e24633, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255688

RESUMO

BACKGROUND: Women choosing a levonorgestrel-releasing intrauterine system may experience changes in their menstrual bleeding pattern during the first months following placement. OBJECTIVE: Although health care professionals (HCPs) can provide counseling, no method of providing individualized information on the expected bleeding pattern or continued support is currently available for women experiencing postplacement bleeding changes. We aim to develop a mobile phone-based medical app (MyIUS) to meet this need and provide a digital companion to women after the placement of the intrauterine system. METHODS: The MyIUS app is classified as a medical device and uses an artificial intelligence-based bleeding pattern prediction algorithm to estimate a woman's future bleeding pattern in terms of intensity and regularity. We developed the app with the help of a multidisciplinary team by using a robust and high-quality design process in the context of a constantly evolving regulatory landscape. The development framework consisted of a phased approach including ideation, feasibility and concept finalization, product development, and product deployment or localization stages. RESULTS: The MyIUS app was considered useful by HCPs and easy to use by women who were consulted during the development process. Following the launch of the sustainable app in selected pilot countries, performance metrics will be gathered to facilitate further technical and feature updates and enhancements. A real-world performance study will also be conducted to allow us to upgrade the app in accordance with the new European Commission Medical Device legislation and to validate the bleeding pattern prediction algorithm in a real-world setting. CONCLUSIONS: By providing a meaningful estimation of bleeding patterns and allowing an individualized approach to counseling and discussions about contraceptive method choice, the MyIUS app offers a useful tool that may benefit both women and HCPs. Further work is needed to validate the performance of the prediction algorithm and MyIUS app in a real-world setting.

20.
Nat Commun ; 12(1): 6669, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795212

RESUMO

All-solid-state batteries are intensively investigated, although their performance is not yet satisfactory for large-scale applications. In this context, the combination of Li10GeP2S12 solid electrolyte and LiNi1-x-yCoxMnyO2 positive electrode active materials is considered promising despite the yet unsatisfactory battery performance induced by the thermodynamically unstable electrode|electrolyte interface. Here, we report electrochemical and spectrometric studies to monitor the interface evolution during cycling and understand the reactivity and degradation kinetics. We found that the Wagner-type model for diffusion-controlled reactions describes the degradation kinetics very well, suggesting that electronic transport limits the growth of the degradation layer formed at the electrode|electrolyte interface. Furthermore, we demonstrate that the rate of interfacial degradation increases with the state of charge and the presence of two oxidation mechanisms at medium (3.7 V vs. Li+/Li < E < 4.2 V vs. Li+/Li) and high (E ≥ 4.2 V vs. Li+/Li) potentials. A high state of charge (>80%) triggers the structural instability and oxygen release at the positive electrode and leads to more severe degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA