Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33532910

RESUMO

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Assuntos
Tomografia por Emissão de Pósitrons , Receptor A2A de Adenosina , Adenosina , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor , Camundongos , Compostos Radiofarmacêuticos , Ratos , Receptor A2A de Adenosina/metabolismo , Suínos
2.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917199

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/química , Imagem Molecular , Tomografia por Emissão de Pósitrons , Animais , Humanos , Ligantes , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
3.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669003

RESUMO

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


Assuntos
Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor/química , Hidrocarbonetos Fluorados/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Receptor A2A de Adenosina/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Animais , Autorradiografia , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Hidrocarbonetos Fluorados/síntese química , Imageamento por Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
4.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252340

RESUMO

The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson's disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Encéfalo/metabolismo , Doença de Parkinson/diagnóstico por imagem , Receptor A2A de Adenosina/metabolismo , Rotenona/efeitos adversos , Antagonistas do Receptor A2 de Adenosina/química , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cricetulus , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor/química , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons
5.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498659

RESUMO

Specific radioligands for in vivo visualization and quantification of cyclic nucleotide phosphodiesterase 2A (PDE2A) by positron emission tomography (PET) are increasingly gaining interest in brain research. Herein we describe the synthesis, the 18F-labelling as well as the biological evaluation of our latest PDE2A (radio-)ligand 9-(5-Butoxy-2-fluorophenyl)-2-(2-([18F])fluoroethoxy)-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazine (([18F])TA5). It is the most potent PDE2A ligand out of our series of imidazopyridotriazine-based derivatives so far (IC50 hPDE2A = 3.0 nM; IC50 hPDE10A > 1000 nM). Radiolabelling was performed in a one-step procedure starting from the corresponding tosylate precursor. In vitro autoradiography on rat and pig brain slices displayed a homogenous and non-specific binding of the radioligand. Investigation of stability in vivo by reversed-phase HPLC (RP-HPLC) and micellar liquid chromatography (MLC) analyses of plasma and brain samples obtained from mice revealed a high fraction of one main radiometabolite. Hence, we concluded that [18F]TA5 is not appropriate for molecular imaging of PDE2A neither in vitro nor in vivo. Our ongoing work is focusing on further structurally modified compounds with enhanced metabolic stability.


Assuntos
Encéfalo/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/análise , Imidazóis/química , Imagem Molecular/métodos , Neuroimagem/métodos , Piridinas/química , Animais , Autorradiografia/métodos , Encéfalo/ultraestrutura , Cromatografia Líquida/métodos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Radioisótopos de Flúor , Camundongos , Microtomia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química , Ratos , Coloração e Rotulagem/métodos , Suínos , Técnicas de Cultura de Tecidos
6.
Molecules ; 21(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213312

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Tomografia por Emissão de Pósitrons , Radioisótopos/metabolismo , Humanos
7.
Molecules ; 20(6): 9591-615, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26016549

RESUMO

Phosphodiesterase 2A (PDE2A) is highly and specifically expressed in particular brain regions that are affected by neurological disorders and in certain tumors. Development of a specific PDE2A radioligand would enable molecular imaging of the PDE2A protein via positron emission tomography (PET). Herein we report on the syntheses of three novel fluoroalkylated triazine derivatives (TA2-4) and on the evaluation of their effect on the enzymatic activity of human PDE2A. The most potent PDE2A inhibitors were 18F-radiolabelled ([18F]TA3 and [18F]TA4) and investigated regarding their potential as PET radioligands for imaging of PDE2A in mouse brain. In vitro autoradiography on rat brain displayed region-specific distribution of [18F]TA3 and [18F]TA4, which is consistent with the expression pattern of PDE2A protein. Metabolism studies of both [18F]TA3 and [18F]TA4 in mice showed a significant accumulation of two major radiometabolites of each radioligand in brain as investigated by micellar radio-chromatography. Small-animal PET/MR studies in mice using [18F]TA3 revealed a constantly increasing uptake of activity in the non-target region cerebellum, which may be caused by the accumulation of brain penetrating radiometabolites. Hence, [18F]TA3 and [18F]TA4 are exclusively suitable for in vitro investigation of PDE2A. Nevertheless, further structural modification of these promising radioligands might result in metabolically stable derivatives.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Marcação por Isótopo/métodos , Neuroimagem/métodos , Inibidores de Fosfodiesterase/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Triazinas/farmacocinética , Animais , Autorradiografia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Feminino , Radioisótopos de Flúor , Humanos , Camundongos , Permeabilidade , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Ratos , Ratos Sprague-Dawley , Triazinas/química , Triazinas/metabolismo
8.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631343

RESUMO

The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson's (PD) and Huntington's (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR-specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone-treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time-activity curves to calculate the mean residence time (MRT) by non-compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone-treated mice compared to the control-aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g-1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non-invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.

9.
Pharmaceuticals (Basel) ; 9(2)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110797

RESUMO

Phosphodiesterases (PDEs) are enzymes that play a major role in cell signalling by hydrolysing the secondary messengers cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP) throughout the body and brain. Altered cyclic nucleotide-mediated signalling has been associated with a wide array of disorders, including neurodegenerative disorders. Recently, PDE5 has been shown to be involved in neurodegenerative disorders such as Alzheimer's disease, but its precise role has not been elucidated yet. To visualize and quantify the expression of this enzyme in brain, we developed a radiotracer for specific PET imaging of PDE5. A quinoline-based lead compound has been structurally modified resulting in the fluoroethoxymethyl derivative ICF24027 with high inhibitory activity towards PDE5 (IC50 = 1.86 nM). Radiolabelling with fluorine-18 was performed by a one-step nucleophilic substitution reaction using a tosylate precursor (RCY(EOB) = 12.9% ± 1.8%; RCP > 99%; SA(EOS) = 70-126 GBq/µmol). In vitro autoradiographic studies of [(18)F]ICF24027 on different mouse tissue as well as on porcine brain slices demonstrated a moderate specific binding to PDE5. In vivo studies in mice revealed that [(18)F]ICF24027 was metabolized under formation of brain penetrable radiometabolites making the radiotracer unsuitable for PET imaging of PDE5 in brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA