Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(12): e1011660, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060618

RESUMO

Rotating spiral waves in the heart are associated with life-threatening cardiac arrhythmias such as ventricular tachycardia and fibrillation. These arrhythmias are treated by a process called defibrillation, which forces electrical resynchronization of the heart tissue by delivering a single global high-voltage shock directly to the heart. This method leads to immediate termination of spiral waves. However, this may not be the only mechanism underlying successful defibrillation, as certain scenarios have also been reported, where the arrhythmia terminated slowly, over a finite period of time. Here, we investigate the slow termination dynamics of an arrhythmia in optogenetically modified murine cardiac tissue both in silico and ex vivo during global illumination at low light intensities. Optical imaging of an intact mouse heart during a ventricular arrhythmia shows slow termination of the arrhythmia, which is due to action potential prolongation observed during the last rotation of the wave. Our numerical studies show that when the core of a spiral is illuminated, it begins to expand, pushing the spiral arm towards the inexcitable boundary of the domain, leading to termination of the spiral wave. We believe that these fundamental findings lead to a better understanding of arrhythmia dynamics during slow termination, which in turn has implications for the improvement and development of new cardiac defibrillation techniques.


Assuntos
Coração , Optogenética , Animais , Camundongos , Optogenética/métodos , Arritmias Cardíacas , Potenciais de Ação , Luz
2.
Front Physiol ; 5: 337, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249982

RESUMO

To investigate the dynamics and propensity for arrhythmias in intact transgenic hearts comprehensively, optical strategies for panoramic fluorescence imaging of action potential (AP) propagation are essential. In particular, mechanism-oriented molecular studies usually depend on transgenic mouse hearts of only a few millimeters in size. Furthermore, the temporal scales of the mouse heart remain a challenge for panoramic fluorescence imaging with heart rates ranging from 200 min(-1) (e.g., depressed sinus node function) to over 1200 min(-1) during fast arrhythmias. To meet these challenging demands, we and others developed physiologically relevant mouse models and characterized their hearts with planar AP mapping. Here, we summarize the progress toward panoramic fluorescence imaging and its prospects for the mouse heart. In general, several high-resolution cameras are synchronized and geometrically arranged for panoramic voltage mapping and the surface and blood vessel anatomy documented through image segmentation and heart surface reconstruction. We expect that panoramic voltage imaging will lead to novel insights about molecular arrhythmia mechanisms through quantitative strategies and organ-representative analysis of intact mouse hearts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA