Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0186491, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049355

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS) and intrahepatic portosystemic shunts (IHPSS) was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS P<0.01; IHPSS P = 0.042). Involvement of lipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.


Assuntos
Metabolismo dos Lipídeos , Fígado/metabolismo , Derivação Portossistêmica Cirúrgica , Animais , Cromatografia Líquida de Alta Pressão , Cães , Espectrometria de Massas , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Stem Cell Reports ; 8(4): 822-830, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28344000

RESUMO

Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog, and cat liver were provided with fatty acids. Lipid accumulation was observed in all organoids and interestingly, feline liver organoids accumulated more lipid droplets than human organoids. Finally, we demonstrate effects of interference with ß-oxidation on lipid accumulation in feline liver organoids. In conclusion, feline liver organoids can be successfully cultured and display a predisposition for lipid accumulation, making them an interesting model in hepatic steatosis research.


Assuntos
Células-Tronco Adultas/patologia , Fígado Gorduroso/patologia , Fígado/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/patologia , Células-Tronco Adultas/citologia , Animais , Gatos , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Hepatócitos/citologia , Hepatócitos/patologia , Fígado/citologia , Masculino , Organoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA