Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur J Neurosci ; 53(2): 390-401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007132

RESUMO

Major depressive disorder (MDD) is one of the most severe global health problems with millions of people affected, however, the mechanisms underlying this disorder is still poorly understood. Genome-wide association studies have highlighted a link between the neutral amino acid transporter SLC6A15 and MDD. Additionally, a number of preclinical studies support the function of this transporter in modulating levels of brain neurotransmitters, stress system regulation and behavioural phenotypes related to MDD. However, the molecular and functional mechanisms involved in this interaction are still unresolved. Therefore, to investigate the effects of the SLC6A15 transporter, we used hippocampal tissue from Slc6a15-KO and wild-type mice, together with several in-vitro assays in primary hippocampal neurons. Utilizing a proteomics approach we identified differentially regulated proteins that formed a regulatory network and pathway analysis indicated significantly affected cellular domains, including metabolic, mitochondrial and structural functions. Furthermore, we observed reduced release probability at glutamatergic synapses, increased mitochondrial function, higher GSH/GSSG redox ratio and an improved neurite outgrowth in primary neurons lacking SLC6A15. In summary, we hypothesize that by controlling the intracellular concentrations of neutral amino acids, SLC6A15 affects mitochondrial activity, which could lead to alterations in neuronal structure and activity. These data provide further indication that a pharmacological or genetic reduction of SLC6A15 activity may indeed be a promising approach for antidepressant therapy.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Transtorno Depressivo Maior , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Risco
2.
Dev Neurosci ; 36(6): 454-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25195605

RESUMO

Prenatal stress (PS) exposure is known to increase the risk of developing emotional disorders like major depression in later life. However, some individuals do not succumb to adversity following developmental stress exposure, a phenomenon referred to as resilience. To date, the molecular mechanisms explaining why some subjects are vulnerable and others more resilient to PS are far from understood. Recently, we have shown that the serotonin transporter (5-HTT) gene may play a modulating role in rendering individuals susceptible or resilient to PS. However, it is not clear which molecular players are mediating the interaction between PS and the 5-Htt genotype in the context of vulnerability and resilience to PS. For this purpose, we performed a microarray study with the help of Affymetrix GeneChip® Mouse Genome 430 2.0 Array, in which we separated wild-type and heterozygous 5-Htt-deficient (5-Htt+/-) PS offspring into susceptible and resilient offspring according to their performance in the forced swim test. Performance-oriented LIMMA analysis on the mRNA expression microarray data was followed by subsequent Spearman's correlation analysis linking the individual qRT-PCR mRNA expression data to various anxiety- and depression-related behavioral and neuroendocrine measures. Results indicate that, amongst others, Fos-induced growth factor (Figf), galanin receptor 3 (Galr3), growth hormone (Gh) and prolactin (Prl) were differentially expressed specifically in resilient offspring when compared to controls, and that the hippocampal expression of these genes showed several strong correlations with various measures of the hypothalamus-pituitary-adrenal axis (re)activity. In conclusion, there seems to be an intricate interplay between the expression of Figf, Galr3, Gh and Prl and neuroendocrine regulation, which may be critical in mediating resilience to PS exposure. More insight into the exact role of these molecular players may significantly enhance the development of new treatment strategies for stress-related emotional disorders.


Assuntos
Comportamento Animal/fisiologia , Cortisona/metabolismo , Predisposição Genética para Doença , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Estresse Psicológico/genética , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hormônio do Crescimento/genética , Camundongos , Gravidez , Prolactina/genética , Receptor Tipo 3 de Galanina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Psicológico/metabolismo , Fator D de Crescimento do Endotélio Vascular/genética
3.
Sci Immunol ; 7(78): eade9888, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36378074

RESUMO

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30-amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice after SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. Whereas the Omicron BA.1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice, primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that, when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth and that the bivalent version also has the potential to confer protection to individuals with no preexisting immunity against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Infecções Irruptivas , RNA Mensageiro
4.
PLoS One ; 6(8): e22715, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857948

RESUMO

Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-Htt×PS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety- and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip® Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype×PS manner, indicating a gene×environment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice--particularly females--at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.


Assuntos
Desempenho Psicomotor/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Estresse Psicológico/fisiopatologia , Transcriptoma , Análise de Variância , Animais , Animais Recém-Nascidos , Ansiedade/fisiopatologia , Ansiedade/psicologia , Cognição/fisiologia , Corticosterona/sangue , Depressão/fisiopatologia , Depressão/psicologia , Feminino , Perfilação da Expressão Gênica/métodos , Interação Gene-Ambiente , Hipocampo/metabolismo , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Fatores Sexuais , Estresse Psicológico/sangue , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA