Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(1): 103-117, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38376755

RESUMO

We demonstrate live-updating ptychographic reconstruction with the extended ptychographical iterative engine, an iterative ptychography method, during ongoing data acquisition. The reconstruction starts with a small subset of the total data, and as the acquisition proceeds the data used for reconstruction are extended. This creates a live-updating view of object and illumination that allows monitoring the ongoing experiment and adjusting parameters with quick turn around. This is particularly advantageous for long-running acquisitions. We show that such a gradual reconstruction yields interpretable results already with a small subset of the data. We show simulated live processing with various scan patterns, parallelized reconstruction, and real-world live processing at the hard X-ray ptychographic nanoanalytical microscope PtyNAMi at the PETRA III beamline.

2.
J Synchrotron Radiat ; 29(Pt 3): 794-806, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511012

RESUMO

The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging with sub-picosecond temporal resolution. X-ray grating interferometry offers a phase-sensitive full-field imaging technique where the phase retrieval can be carried out from a single exposure alone. Thus, the method is attractive for imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse fluctuations pose a major challenge. In this work, the single-exposure phase imaging capabilities of grating interferometry are characterized by an implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire, UK). For comparison purposes, propagation-based phase contrast imaging was also performed at the same instrument. The characterization is carried out in terms of the quantitativeness and the contrast-to-noise ratio of the phase reconstructions as well as via the achievable spatial resolution. By using a statistical image reconstruction scheme, previous limitations of grating interferometry regarding the spatial resolution can be mitigated as well as the experimental applicability of the technique.

3.
Opt Express ; 30(18): 31519-31529, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242232

RESUMO

Diffraction-limited hard X-ray optics are key components for high-resolution microscopy, in particular for upcoming synchrotron radiation sources with ultra-low emittance. Diffractive optics like multilayer Laue lenses (MLL) have the potential to reach unprecedented numerical apertures (NA) when used in a crossed geometry of two one-dimensionally focusing lenses. However, minuscule fluctuations in the manufacturing process and technical limitations for high NA X-ray lenses can prevent a diffraction-limited performance. We present a method to overcome these challenges with a tailor-made refractive phase plate. With at-wavelength metrology and a rapid prototyping approach we demonstrate aberration correction for a crossed pair of MLL, improving the Strehl ratio from 0.41(2) to 0.81(4) at a numerical aperture of 3.3 × 10-3. This highly adaptable aberration-correction scheme provides an important tool for diffraction-limited hard X-ray focusing.

4.
J Synchrotron Radiat ; 28(Pt 3): 1030, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950011

RESUMO

A correction in the paper by Seiboth et al. [(2018). J. Synchrotron Rad. 25, 108-115] is made.

5.
J Synchrotron Radiat ; 28(Pt 5): 1518-1527, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475299

RESUMO

Many processes and materials in heterogeneous catalysis undergo dynamic structural changes depending on their chemical environment. Monitoring such dynamic changes can be challenging using conventional spectroscopic characterization tools, due to the high time resolution required. Here, a high-resolution 2D X-ray camera operating at 50 Hz full-frame rate was synchronized with a QEXAFS monochromator, enabling rapid spectro-microscopic imaging with chemical contrast over individual pixels. This was used to monitor chemical gradients within a model Pt/Al2O3 catalyst during catalytic partial oxidation of methane to synthesis gas. The transition from methane combustion (partly oxidized Pt) to combustion-reforming and partial oxidation (fully reduced Pt) was observed by a characteristic reduction front, which progressed from the end of the catalyst bed towards its beginning on the second time scale. The full-field QEXAFS imaging method applied here allows acquisition of entire XANES spectra `on the fly' in a rapid and spatially resolved manner. The combination of high spatial and temporal resolution with spectroscopic data offers new opportunities for observing dynamic processes in catalysts and other functional materials at work. The methodology is flexible and can be applied at beamlines equipped with a QEXAFS or other fast-scanning monochromators and a suitable sample environment for gas phase analytics to allow for catalytic studies at the same time.

6.
J Synchrotron Radiat ; 28(Pt 1): 52-63, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399552

RESUMO

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.

7.
J Synchrotron Radiat ; 28(Pt 5): 1393-1416, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475288

RESUMO

The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.

8.
J Synchrotron Radiat ; 27(Pt 2): 486-493, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153289

RESUMO

This paper presents a deep learning algorithm for tomographic reconstruction (GANrec). The algorithm uses a generative adversarial network (GAN) to solve the inverse of the Radon transform directly. It works for independent sinograms without additional training steps. The GAN has been developed to fit the input sinogram with the model sinogram generated from the predicted reconstruction. Good quality reconstructions can be obtained during the minimization of the fitting errors. The reconstruction is a self-training procedure based on the physics model, instead of on training data. The algorithm showed significant improvements in the reconstruction accuracy, especially for missing-wedge tomography acquired at less than 180° rotational range. It was also validated by reconstructing a missing-wedge X-ray ptychographic tomography (PXCT) data set of a macroporous zeolite particle, for which only 51 projections over 70° could be collected. The GANrec recovered the 3D pore structure with reasonable quality for further analysis. This reconstruction concept can work universally for most of the ill-posed inverse problems if the forward model is well defined, such as phase retrieval of in-line phase-contrast imaging.

9.
J Synchrotron Radiat ; 26(Pt 5): 1554-1557, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490143

RESUMO

The manufacturing steps and first tests of a refractive lens made of polycrystalline diamond are described. A fabrication process based on electron-beam lithography and deep reactive ion etching is introduced. Experimental tests on beamline ID13 at the ESRF have been performed. A spot size of 360 nm (FWHM) at an energy E = 24.3 keV is observed.

10.
J Synchrotron Radiat ; 26(Pt 5): 1769-1781, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490169

RESUMO

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.


Assuntos
Catálise , Ciência dos Materiais/instrumentação , Microscopia Eletrônica , Elétrons , Desenho de Equipamento , Ouro/química , Síncrotrons , Temperatura , Raios X , Zeolitas/química
11.
Chemistry ; 25(63): 14430-14440, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31478582

RESUMO

The successful synthesis of hierarchically structured titanium silicalite-1 (TS-1) with large intracrystalline macropores by steam-assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation-based ptychographic X-ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon-to-titanium ratio of the macroporous TS-1 samples was successfully tuned from 100 to 44. The hierarchically structured TS-1 exhibited high activity in the liquid phase epoxidation of 2-octene with hydrogen peroxide. The hierarchically structured TS-1 surpassed a conventional nano-sized TS-1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions.

12.
J Synchrotron Radiat ; 25(Pt 1): 108-115, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271759

RESUMO

Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with \bar{\sigma} = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without prior lens characterization but simply based on the derived lens deformation. The performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.

13.
J Synchrotron Radiat ; 22(3): 599-605, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931074

RESUMO

X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

14.
J Synchrotron Radiat ; 22(3): 520-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931063

RESUMO

The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

15.
Adv Sci (Weinh) ; 11(2): e2301873, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009788

RESUMO

Small voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids. By measuring operando current and X-ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material-deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.

16.
Opt Express ; 21(7): 8051-61, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571895

RESUMO

Focusing hard x-ray free-electron laser radiation with extremely high fluence sets stringent demands on the x-ray optics. Any material placed in an intense x-ray beam is at risk of being damaged. Therefore, it is crucial to find the damage thresholds for focusing optics. In this paper we report experimental results of exposing tungsten and diamond diffractive optics to a prefocused 8.2 keV free-electron laser beam in order to find damage threshold fluence levels. Tungsten nanostructures were damaged at fluence levels above 500 mJ/cm(2). The damage was of mechanical character, caused by thermal stress variations. Diamond nanostructures were affected at a fluence of 59 000 mJ/cm(2). For fluence levels above this, a significant graphitization process was initiated. Scanning Electron Microscopy (SEM) and µ-Raman analysis were used to analyze exposed nanostructures.


Assuntos
Diamante/química , Diamante/efeitos da radiação , Lasers , Lentes , Refratometria/instrumentação , Tungstênio/química , Tungstênio/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Raios X
17.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523736

RESUMO

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

18.
Opt Lett ; 37(24): 5046-8, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258000

RESUMO

We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes. The method is simple to implement and can provide single-shot information about the focusing quality. We used the Ronchi test to measure the aberrations in a nanofocusing Fresnel zone plate at the Linac Coherent Light Source at 8.194 keV.


Assuntos
Algoritmos , Análise de Falha de Equipamento/instrumentação , Lasers , Lentes , Nanotecnologia/instrumentação , Refratometria/instrumentação , Elétrons , Análise de Falha de Equipamento/métodos , Luz , Nanotecnologia/métodos , Refratometria/métodos , Espalhamento de Radiação , Raios X
19.
Adv Sci (Weinh) ; 9(8): e2105432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35289133

RESUMO

The synthesis of hierarchically porous materials usually requires complex experimental procedures, often based around extensive trial and error approaches. One common synthesis strategy is the sol-gel method, although the relation between synthesis parameters, material structure and function has not been widely explored. Here, in situ 2D hard X-ray ptychography (XRP) and 3D ptychographic X-ray computed tomography (PXCT) are applied to monitor the development of hierarchical porosity in Ni/Al2 O3 and Al2 O3 catalysts with connected meso- and macropore networks. In situ XRP allows to follow textural changes of a dried gel Ni/Al2 O3 sample as a function of temperature during calcination, activation and CO2 methanation reaction. Complementary PXCT studies on dried gel particles of Ni/Al2 O3 and Al2 O3 provide quantitative information on pore structure, size distribution, and shape with 3D spatial resolution approaching 50 nm, while identical particles are imaged ex situ before and after calcination. The X-ray imaging results are correlated with N2 -sorption, Hg porosimetry and He pycnometry pore characterization. Hard X-ray nanotomography is highlighted to derive fine structural details including tortuosity, branching nodes, and closed pores, which are relevant in understanding transport phenomena during chemical reactions. XRP and PXCT are enabling technologies to understand complex synthesis pathways of porous materials.

20.
Opt Express ; 19(17): 16324-9, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21934996

RESUMO

Scanning coherent diffraction microscopy (ptychography) is an emerging hard x-ray microscopy technique that yields spatial resolutions well below the lateral size of the probing nanobeam. Besides a high resolution image of the object, the complex wave field of the probe can be reconstructed at the position of the object. By verifying the consistency of several independent wave field measurements along the optical axis, we address the question of how well the reconstruction represents the nanobeam. With a single ptychogram the wave field can be properly determined over a large range along the optical axis, also at positions inaccessible otherwise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA