Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurosci ; 20(1): 16, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975083

RESUMO

BACKGROUND: Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. RESULTS: Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light-dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. CONCLUSIONS: Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.


Assuntos
Ansiedade/fisiopatologia , Cognição , Depressão/fisiopatologia , Neuralgia/fisiopatologia , Nervo Isquiático/lesões , Animais , Ansiedade/complicações , Antígeno B7-H1/genética , Comportamento Animal/fisiologia , Constrição Patológica , Depressão/complicações , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Masculino , Camundongos , Camundongos Knockout , Neuralgia/complicações , Fatores de Tempo
2.
Pain ; 164(4): 728-740, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969236

RESUMO

ABSTRACT: Pain syndromes are often accompanied by complex molecular and cellular changes in dorsal root ganglia (DRG). However, the evaluation of cellular plasticity in the DRG is often performed by heuristic manual analysis of a small number of representative microscopy image fields. In this study, we introduce a deep learning-based strategy for objective and unbiased analysis of neurons and satellite glial cells (SGCs) in the DRG. To validate the approach experimentally, we examined serial sections of the rat DRG after spared nerve injury (SNI) or sham surgery. Sections were stained for neurofilament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) and imaged using high-resolution large-field (tile) microscopy. After training of deep learning models on consensus information of different experts, thousands of image features in DRG sections were analyzed. We used known (GFAP upregulation), controversial (neuronal loss), and novel (SGC phenotype switch) changes to evaluate the method. In our data, the number of DRG neurons was similar 14 d after SNI vs sham. In GFAP-positive subareas, the percentage of neurons in proximity to GFAP-positive cells increased after SNI. In contrast, GS-positive signals, and the percentage of neurons in proximity to GS-positive SGCs decreased after SNI. Changes in GS and GFAP levels could be linked to specific DRG neuron subgroups of different size. Hence, we could not detect gliosis but plasticity changes in the SGC marker expression. Our objective analysis of DRG tissue after peripheral nerve injury shows cellular plasticity responses of SGCs in the whole DRG but neither injury-induced neuronal death nor gliosis.


Assuntos
Gânglios Espinais , Traumatismos dos Nervos Periféricos , Ratos , Animais , Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Gliose/metabolismo
3.
Front Physiol ; 13: 972104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160838

RESUMO

At any moment in time, cells coordinate and balance their calcium ion (Ca2+) fluxes. The term 'Ca2+ homeostasis' suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca2+ imaging shows that resting Ca2+ levels are maintained by surprisingly dynamic Ca2+ fluxes between the ER Ca2+ store, the cytosol, and the extracellular space. The data show that the ER Ca2+ leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca2+ dynamics. Based on simplistic Ca2+ toolkit models, we discuss how the ER Ca2+ leak could contribute to evolutionarily conserved Ca2+ phenomena such as Ca2+ entry, ER Ca2+ release, and Ca2+ oscillations.

4.
Front Neurol ; 13: 885026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720065

RESUMO

The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of "efferent auditory neuropathy." Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.

5.
Cell Calcium ; 101: 102515, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896701

RESUMO

How homeostatic ER calcium fluxes shape cellular calcium signals is still poorly understood. Here we used dual-color calcium imaging (ER-cytosol) and transcriptome analysis to link candidates of the calcium toolkit of astrocytes with homeostatic calcium signals. We found molecular and pharmacological evidence that P/Q-type channel Cacna1a contributes to depolarization-dependent calcium entry in astrocytes. For stimulated ER calcium release, the cells express the phospholipase Cb3, IP3 receptors Itpr1 and Itpr2, but no ryanodine receptors (Ryr1-3). After IP3-induced calcium release, Stim1/2 - Orai1/2/3 most likely mediate SOCE. The Serca2 (Atp2a2) is the candidate for refilling of the ER calcium store. The cells highly express adenosine receptor Adora1a for IP3-induced calcium release. Accordingly, adenosine induces fast ER calcium release and subsequent ER calcium oscillations. After stimulation, calcium refilling of the ER depends on extracellular calcium. In response to SOCE, astrocytes show calcium-induced calcium release, notably even after ER calcium was depleted by extracellular calcium removal in unstimulated cells. In contrast, spontaneous ER-cytosol calcium oscillations were not fully dependent on extracellular calcium, as ER calcium oscillations could persist over minutes in calcium-free solution. Additionally, cell-autonomous calcium oscillations show a second-long spatial and temporal delay in the signal dynamics of ER and cytosolic calcium. Our data reveal a rather strong contribution of homeostatic calcium fluxes in shaping IP3-induced and calcium-induced calcium release as well as spatiotemporal components of intracellular calcium oscillations.


Assuntos
Sinalização do Cálcio , Cálcio , Astrócitos/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Homeostase , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA