Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 51(39): 7733-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22935004

RESUMO

The prenyltransferase CymD catalyzes the reverse N-prenylation of tryptophan using dimethylallyl diphosphate (DMAPP) in the biosynthesis of the cyclic peptides cyclomarin and cyclomarazine. The mechanism is of interest because a non-nucleophilic indole nitrogen must be alkylated in this process. Three mechanisms were initially considered, including (A) a direct addition of a carbocation to the nitrogen, (B) an addition of a carbocation to C-3 followed by an aza-Cope rearrangement, and (C) deprotonation of the indole followed by an S(N)2' addition to DMAPP. The use of 4-fluorotryptophan and 6-fluorotryptophan revealed that the reaction kinetics are only modestly affected by these substitutions, consistent with the notion that positive charge does not accumulate on the indole ring during catalysis. When (E)-3-(fluoromethyl)-2-buten-1-yl diphosphate was used in place of DMAPP, the maximal rate was reduced by a factor of 100, consistent with the development of positive charge on the dimethylallyl moiety. Positional isotope exchange (PIX) experiments show that the reaction with Trp proceeds without isotopic scrambling of the label in the starting material [1-(18)O]DMAPP. However, in the case of 4-fluorotryptophan, significant isotopic scrambling is observed (v(PIX)/v(rxn) = 1.1). This is consistent with a mechanism involving a discrete carbocation intermediate. Finally, a significant solvent kinetic isotope effect of 2.3 was observed in D(2)O, indicating that a proton transfer step is rate-limiting. Taken together, these observations support a mechanism that is a hybrid of mechanisms A and C. Ionization of DMAPP generates a dimethylallyl carbocation, and deprotonation of the indole nitrogen accompanies or precedes the nucleophilic attack.


Assuntos
Actinobacteria/enzimologia , Dimetilaliltranstransferase/metabolismo , Triptofano/metabolismo , Actinobacteria/metabolismo , Halogenação , Hemiterpenos/metabolismo , Indóis/metabolismo , Cinética , Compostos Organofosforados/metabolismo , Prenilação , Prótons , Triptofano/análogos & derivados
2.
Appl Environ Microbiol ; 77(11): 3617-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498757

RESUMO

Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.


Assuntos
Produtos Biológicos/biossíntese , Vias Biossintéticas/genética , Frankia/genética , Frankia/metabolismo , Genômica , Proteômica , Família Multigênica
3.
Clin Exp Gastroenterol ; 14: 249-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135613

RESUMO

Functional gastrointestinal disorders (FGID) are now classified within the Rome IV framework as disorders of gut-brain interaction (DGBI). Disorders of gastrointestinal transit (as defined by abnormalities on contemporary gastrointestinal motility testing) frequently are associated with symptoms that are also characteristic of DGBIs. In this narrative review, we outline a non-inclusive set of systemic diseases or risk factors that have been classically associated with DGBIs and disorders of gastrointestinal transit; these include diabetes mellitus, paraneoplastic syndromes, surgery, Parkinson's disease, systemic sclerosis, endocrinopathies, polypharmacy, and post-infectious syndromes.

4.
J Nat Prod ; 73(3): 373-7, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20055491

RESUMO

In vitro and in vivo characterization of the cyclomarin/cyclomarazine prenyltransferase CymD revealed its ability to prenylate tryptophan prior to incorporation into both cyclic peptides by the nonribosomal peptide synthetase CymA. This knowledge was utilized to bioengineer novel derivatives of these marine bacterial natural products by providing synthetic N-alkyl tryptophans to a prenyltransferase-deficient mutant of Salinispora arenicola CNS-205.


Assuntos
Actinobacteria/enzimologia , Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Triptofano/análogos & derivados , Triptofano/biossíntese , Bioengenharia , Dimetilaliltranstransferase/deficiência , Biologia Marinha , Estrutura Molecular , Peptídeo Sintases , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Triptofano/química
5.
Anal Chem ; 81(11): 4200-9, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19413302

RESUMO

Natural and non-natural cyclic peptides are a crucial component in drug discovery programs because of their considerable pharmaceutical properties. Cyclosporin, microcystins, and nodularins are all notable pharmacologically important cyclic peptides. Because these biologically active peptides are often biosynthesized nonribosomally, they often contain nonstandard amino acids, thus increasing the complexity of the resulting tandem mass spectrometry data. In addition, because of the cyclic nature, the fragmentation patterns of many of these peptides showed much higher complexity when compared to related counterparts. Therefore, at the present time it is still difficult to annotate cyclic peptides MS/MS spectra. In this current work, an annotation program was developed for the annotation and characterization of tandem mass spectra obtained from cyclic peptides. This program, which we call MS-CPA is available as a web tool (http://lol.ucsd.edu/ms-cpa_v1/Input.py). Using this program, we have successfully annotated the sequence of representative cyclic peptides, such as seglitide, tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in a rapid manner and also were able to provide the first-pass structure evidence of a newly discovered natural product based on predicted sequence. This compound is not available in sufficient quantities for structural elucidation by other means such as NMR. In addition to the development of this cyclic annotation program, it was observed that some cyclic peptides fragmented in unexpected ways resulting in the scrambling of sequences. In summary, MS-CPA not only provides a platform for rapid confirmation and annotation of tandem mass spectrometry data obtained with cyclic peptides but also enables quantitative analysis of the ion intensities. This program facilitates cyclic peptide analysis, sequencing, and also acts as a useful tool to investigate the uncommon fragmentation phenomena of cyclic peptides and aids the characterization of newly discovered cyclic peptides encountered in drug discovery programs.


Assuntos
Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos Cíclicos/análise , Software , Espectrometria de Massas em Tandem/métodos , Antibacterianos/análise , Íons/química , Estrutura Molecular , Peptídeos Cíclicos/química , Espectrometria de Massas em Tandem/economia , Fatores de Tempo , Tirocidina/análise
7.
J Am Chem Soc ; 130(13): 4507-16, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18331040

RESUMO

Two new diketopiperazine dipeptides, cyclomarazines A and B, were isolated and characterized along with the new cyclic heptapeptide cyclomarin D from the marine bacterium Salinispora arenicola CNS-205. These structurally related cyclic peptides each contain modified amino acid residues, including derivatives of N-(1,1-dimethylallyl)-tryptophan and delta-hydroxyleucine, which are common in the di- and heptapeptide series. Stable isotope incorporation studies in Streptomyces sp. CNB-982, which was first reported to produce the cyclomarin anti-inflammatory agents, illuminated the biosynthetic building blocks associated with the major metabolite cyclomarin A, signifying that this marine microbial peptide is nonribosomally derived largely from nonproteinogenic amino acid residues. DNA sequence analysis of the 5.8 Mb S. arenicola circular genome and PCR-targeted gene inactivation experiments identified the 47 kb cyclomarin/cyclomarazine biosynthetic gene cluster (cym) harboring 23 open reading frames. The cym locus is dominated by the 23 358 bp cymA, which encodes a 7-module nonribosomal peptide synthetase (NRPS) responsible for assembly of the full-length cyclomarin heptapeptides as well as the truncated cyclomarazine dipeptides. The unprecedented biosynthetic feature of the megasynthetase CymA to synthesize differently sized peptides in vivo may be triggered by the level of beta oxidation of the priming tryptophan residue, which is oxidized in the cyclomarin series and unoxidized in the cyclomarazines. Biosynthesis of the N-(1,1-dimethyl-2,3-epoxypropyl)-beta-hydroxytryptophan residue of cyclomarin A was further illuminated through gene inactivation experiments, which suggest that the tryptophan residue is reverse prenylated by CymD prior to release of the cyclic peptide from the CymA megasynthetase, whereas the cytochrome P450 CymV installs the epoxide group on the isoprene of cyclomarin C post-NRPS assembly. Last, the novel amino acid residue 2-amino-3,5-dimethylhex-4-enoic acid in the cyclomarin series was shown by bioinformatics and stable isotope experiments to derive from a new pathway involving condensation of isobutyraldehyde and pyruvate followed by S-adenosylmethionine methylation. Assembly of this unsaturated, branched amino acid is unexpectedly related to the degradation of the environmental pollutant 3-(3-hydroxyphenyl)propionic acid.


Assuntos
Actinomyces/química , Actinomyces/metabolismo , Dicetopiperazinas/química , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Conformação Molecular , Oligopeptídeos/química , Peptídeos Cíclicos/isolamento & purificação , Estereoisomerismo
8.
Nat Protoc ; 8(3): 451-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23391889

RESUMO

Untargeted metabolomics provides a comprehensive platform for identifying metabolites whose levels are altered between two or more populations. By using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), hundreds to thousands of peaks with a unique m/z ratio and retention time are routinely detected from most biological samples in an untargeted profiling experiment. Each peak, termed a metabolomic feature, can be characterized on the basis of its accurate mass, retention time and tandem mass spectral fragmentation pattern. Here a seven-step protocol is suggested for such a characterization by using the METLIN metabolite database. The protocol starts from untargeted metabolomic LC-Q-TOF-MS data that have been analyzed with the bioinformatics program XCMS, and it describes a strategy for selecting interesting features as well as performing subsequent targeted tandem MS. The seven steps described will require 2-4 h to complete per feature, depending on the compound.


Assuntos
Bases de Dados Factuais , Metabolômica/métodos , Cromatografia Líquida/métodos , Biologia Computacional , Espectrometria de Massas/métodos , Software
9.
FEMS Microbiol Lett ; 335(2): 95-103, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22812504

RESUMO

Many bacteria produce siderophores for sequestration of growth-essential iron. Analysis of the Salinispora genomes suggests that these marine actinomycetes support multiple hydroxamate- and phenolate-type siderophore pathways. We isolated and characterized desferrioxamines (DFOs) B and E from all three recognized Salinispora species and linked their biosyntheses in S. tropica CNB-440 and S. arenicola CNS-205 to the des locus through PCR-directed mutagenesis. Gene inactivation of the predicted iron-chelator biosynthetic loci sid2-4 did not abolish siderophore chemistry. Additionally, these pathways could not restore the native growth characteristics of the des mutants in iron-limited media, although differential iron-dependent regulation was observed for the yersiniabactin-like sid2 pathway. Consequently, this study indicates that DFOs are the primary siderophores in laboratory cultures of Salinispora.


Assuntos
Desferroxamina/metabolismo , Ferro/metabolismo , Micromonosporaceae/metabolismo , Sideróforos/metabolismo , Sequência de Bases , Ordem dos Genes , Genes Bacterianos , Micromonosporaceae/genética , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Sideróforos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA