Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 81(4): 637-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25640854

RESUMO

Symbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H(+) alongside N2 , and the evolving H2 allows a continuous and non-invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set-up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features. A system was developed that allows the air-proof separation of a root/nodule and a shoot compartment. H2 evolution in the root/nodule compartment can be monitored continuously. Nutrient solution composition, temperature, CO2 concentration and humidity around the shoots can concomitantly be maintained and manipulated. Medicago truncatula plants showed vigorous growth in the system when relying on nitrogen fixation. The set-up was able to provide specific insights into nitrogen fixation. For example, nodule activity depended on the temperature in their surroundings, but not on temperature or light around shoots. Increased temperature around the nodules was able to induce higher nodule activity in darkness versus light around shoots for a period of as long as 8 h. Conditions that affected the N demand of the shoots (ammonium application, Mg or P depletion, super numeric nodules) induced consistent and complex daily rhythms in nodule activity. It was shown that long-term continuous measurements of nodule activity could be useful for revealing special features in mutants and could be of importance when synchronizing nodule harvests for complex analysis of their metabolic status.


Assuntos
Medicago truncatula/fisiologia , Nitrogenase/análise , Nódulos Radiculares de Plantas/fisiologia , Ritmo Circadiano , Fixação de Nitrogênio , Temperatura
2.
Plant J ; 79(6): 964-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24947137

RESUMO

Drought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions. By analyzing carbon and nitrogen metabolism, we studied the mechanisms of physiological adjustment of nitrogen fixation in chickpea plants nodulated with Mesorhizobium ciceri during both drought stress and subsequent recovery. The nitrogenase activity, levels of several key carbon (in nodules) and nitrogen (in both nodules and leaves) metabolites and antioxidant compounds, as well as the activity of related nodule enzymes were examined in M. ciceri-inoculated chickpea plants under early drought stress and subsequent recovery. Results indicated that drought reduced nitrogenase activity, and that this was associated with a reduced expression of the nifK gene. Furthermore, drought stress promoted an accumulation of amino acids, mainly asparagine in nodules (but not in leaves), and caused a cell redox imbalance in nodules. An accumulation of organic acids, especially malate, in nodules, which coincided with the decline of nodulated root respiration, was also observed under drought stress. Taken together, our findings indicate that reduced nitrogenase activity occurring at early stages of drought stress involves, at least, the inhibition of respiration, nitrogen accumulation and an imbalance in cell redox status in nodules. The results of this study demonstrate the potential that the genetic engineering-based improvement of SNF efficiency could be applied to reduce the impact of drought on the productivity of chickpea, and perhaps other legume crops.


Assuntos
Carbono/metabolismo , Cicer/fisiologia , Regulação da Expressão Gênica de Plantas , Mesorhizobium/fisiologia , Nitrogênio/metabolismo , Água/fisiologia , Respiração Celular , Cicer/genética , Cicer/microbiologia , Secas , Malatos/metabolismo , Modelos Biológicos , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Oxirredução , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Simbiose
3.
Plant Physiol ; 164(1): 400-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285852

RESUMO

The mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application. At that point in time, a strong shift in nodule gene expression (RNA sequencing) had occurred (1,120 differentially expressed genes). The most pronounced effect was the down-regulation of 127 genes for nodule-specific cysteine-rich peptides. Various other nodulins were also strongly down-regulated, in particular all the genes for leghemoglobins. In addition, shifts in the expression of genes involved in cellular iron allocation and mitochondrial ATP synthesis were observed. Furthermore, the expression of numerous genes for the formation of proteins and glycoproteins with no obvious function in nodules (e.g. germins, patatin, and thaumatin) was strongly increased. This occurred in conjunction with an up-regulation of genes for proteinase inhibitors, in particular those containing the Kunitz domain. The additionally formed proteins might possibly be involved in reducing nodule oxygen permeability. Between 4 and 28 h of nitrate exposure, a further reduction in nodule activity occurred, and the number of differentially expressed genes almost tripled. In particular, there was a differential expression of genes connected with emerging senescence. It is concluded that nitrate exerts rapid and manifold effects on nitrogenase activity. A certain degree of nitrate tolerance might be achieved when the down-regulatory effect on late nodulins can be alleviated.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/fisiologia , Nitratos/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Ferro/metabolismo , Leghemoglobina/genética , Leghemoglobina/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Proteínas de Membrana/genética , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/farmacologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , RNA de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/genética , Análise de Sequência de RNA
4.
Plant Biotechnol J ; 12(3): 387-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24267445

RESUMO

Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N2 inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N2 fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N2 fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N2 versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.


Assuntos
Cicer/metabolismo , Mesorhizobium/fisiologia , Fixação de Nitrogênio , Nitrogênio/metabolismo , Simbiose , Biomassa , Carbono/metabolismo , Cicer/enzimologia , Cicer/microbiologia , Malatos/metabolismo , Mesorhizobium/enzimologia , Modelos Biológicos , Nitrogenase/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Especificidade da Espécie , Sacarose/metabolismo
5.
J Exp Bot ; 65(20): 6035-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25151618

RESUMO

Legume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N2) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula. Nodule gene expression was profiled through RNA-seq at day 5 of P depletion. Until that point in time P concentration in leaves reached a lower threshold but was maintained in nodules. N2-fixation activity per plant diverged from that of fully nourished plants beginning at day 5 of the P-depletion process, primarily because fewer nodules were being formed, while the activity of the existing nodules was maintained for as long as two weeks into P depletion. RNA-seq revealed nodule acclimation on a molecular level with a total of 1140 differentially expressed genes. Numerous genes for P remobilization from organic structures were increasingly expressed. Various genes involved in nodule malate formation were upregulated, while genes involved in fermentation were downregulated. The fact that nodule formation was strongly repressed with the onset of P deficiency is reflected in the differential expression of various genes involved in nodulation. It is concluded that plants follow a strategy to maintain N2 fixation and viable leaf tissue as long as possible during whole-plant P depletion to maintain their ability to react to emerging new P sources (e.g. through active P acquisition by roots).


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Fósforo/deficiência , Sinorhizobium meliloti/fisiologia , Transcriptoma , Aclimatação , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fenótipo , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Análise de Sequência de RNA , Simbiose
6.
Chemistry ; 20(4): 957-60, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24403172

RESUMO

The preparation of racemic or enantioenriched propane-1,2-diol from dilactides, oligolactides, or poly-L-lactic acid (PLLA) is described. The transformation is carried out as tandem reactions in MeOH, covering hydrolysis and subsequent hydrogenation by using copper chromite as a catalyst. The starting material present undesired side products of the PLLA synthesis or PLLA waste.


Assuntos
Dioxanos/química , Ácido Láctico/química , Plásticos/química , Polímeros/química , Propilenoglicol/síntese química , Hidrogenação , Hidrólise , Poliésteres
7.
Int J Mol Sci ; 15(4): 6031-45, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24727372

RESUMO

Legumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules. The objective of this study was to clarify whether through optimal conditions for growth and CO2 assimilation a higher nodule activity of a supernodulating mutant of Medicago truncatula (M. truncatula) can be induced. Several experimental approaches reveal that under the conditions of our experiments, the nitrogen fixation of the supernodulating mutant, designated as sunn (super numeric nodules), was not limited by photosynthesis. Higher specific nitrogen fixation activity could not be induced through short- or long-term increases in CO2 assimilation around shoots. Furthermore, a whole plant P depletion induced a decline in nitrogen fixation, however this decline did not occur significantly earlier in sunn plants, nor was it more intense compared to the wild-type. However, a distinctly different pattern of nitrogen fixation during the day/night cycles of the experiment indicates that the control of N2 fixing activity of the large number of nodules is an additional problem for the productivity of supernodulating mutants.


Assuntos
Medicago truncatula/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Nitrogênio/química , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fósforo/química , Fósforo/metabolismo , Fotossíntese , Brotos de Planta/metabolismo , Nódulos Radiculares de Plantas/metabolismo
8.
J Exp Bot ; 64(10): 2701-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682114

RESUMO

Medicago truncatula is an important model plant for characterization of P deficiency on leguminous plants at the physiological and molecular levels. Growth optimization of this plant with regard to P supply is the first essential step for elucidation of the role of P in regulation of nodulation. Hence, a study was carried out to address the growth pattern of M. truncatula hydroponically grown at different gradual increases in P levels. The findings revealed that M. truncatula had a narrow P regime, with an optimum P level (12 µM P) which is relatively close to the concentration that induces P toxicity. The accumulated P concentration (2.7 mg g(-1) dry matter), which is normal for other crops and legumes, adversely affected the growth of M. truncatula plants. Under P deficiency, M. truncatula showed a higher symbiotic efficiency with Sinorhizobium meliloti 2011 in comparison with S. meliloti 102F51, partially as a result of higher electron allocation to N2 versus H(+). The total composition of free amino acids in the phloem was significantly affected by P deprivation. This pattern was found to be almost exclusively the result of the increase in the asparagine level, suggesting that asparagine might be the shoot-derived signal that translocates to the nodules and exerts the down-regulation of nitrogenase activity. Additionally, P deprivation was found to have a strong influence on the contents of the nodule carbon metabolites. While levels of sucrose and succinate tended to decrease, a higher accumulation of malate was observed. These findings have provided evidence that N2 fixation of M. truncatula is mediated through an N feedback mechanism which is closely related to nodule carbon metabolism.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Fósforo/metabolismo , Nodulação , Sinorhizobium meliloti/fisiologia , Simbiose , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia
9.
Int J Mol Sci ; 14(3): 5198-213, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23459233

RESUMO

Phosphorus (P)-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S. meliloti 2011, Medicago truncatula had a lower symbiotic efficiency than Medicago sativa. However, little is known about how Medicago-Sinorhizobium is affected by P-deficiency at the whole-plant level. The objective of the present study was to compare and characterize the symbiotic efficiency of N2 fixation of M. truncatula and M. sativa grown in sand under P-limitation. Under this condition, M. truncatula exhibited a significantly higher rate of N2 fixation. The specific activity of the nodules was much higher in M. truncatula in comparison to M. sativa, partially as a result of an increase in electron allocation to N2 versus H+. Although the main organic acid, succinate, exhibited a strong tendency to decrease under P-deficiency, the more efficient symbiotic ability observed in M. truncatula coincided with an apparent increase in the content of malate in its nodules. Our results indicate that the higher efficiency of the M. truncatula symbiotic system is related to the ability to increase malate content under limited P-conditions.

10.
Plant Cell Environ ; 33(12): 2162-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20716066

RESUMO

Nitrogen fixation in legumes is downregulated through a whole plant N feedback mechanism, for example, when under stress. This mechanism is probably triggered by the impact of shoot-borne, phloem-delivered compounds. However, little is known about any whole-plant mechanism that might upregulate nitrogen fixation, for example, under N deficiency. We induced emerging N-deficiency through partial excision of nodules from Medicago truncatula plants. Subsequently, the activity and composition of the remaining nodules and shifts in concentration of free amides/amino acids in the phloem were monitored. Furthermore, we mimicked these shifts through artificial feeding of γ-aminobutyric acid (GABA) into the phloem of undisturbed plants. As a result of increased specific activity of nodules, N(2) fixation per plant recovered almost completely 4-5 d after excision. The concentration of amino acids, sugars and organic acids increased strongly in the upregulated nodules. A concomitant analysis of the phloem revealed a significant increase in GABA concentration. Comparable with the effect of nodule excision, artificial GABA feeding into the phloem resulted in an increased activity and higher concentration of amino acids and organic acids in nodules. It is concluded that GABA might be involved in upregulating nodule activity, possibly because of its constituting part of a putative amino acid cycle between bacteroids and the cytosol.


Assuntos
Medicago truncatula/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Floema/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrogênio/metabolismo , Regulação para Cima , Ácido gama-Aminobutírico
11.
J Exp Bot ; 61(9): 2281-91, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20363863

RESUMO

Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.


Assuntos
Dióxido de Carbono/metabolismo , Fixação de Nitrogênio , Pisum sativum/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Pisum sativum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
12.
J Exp Bot ; 61(1): 121-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19815686

RESUMO

Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate aeration of the root/nodule compartment that avoided any gas leakage to the shoots. The root/nodule compartments were aerated either with a 2500 microl l(-1) (+CO2) or zero microl l(-1) (-CO2) CO2-containing N2/O2 gas flow (80/20, v/v). Nodule CO2 fixation, nitrogen fixation, and growth were strongly increased in the +CO2 treatment in a 3-week experimental period. More intensive CO2 and nitrogen fixation coincided with higher per plant amounts of amino acids and organic acids in the nodules. Moreover, the concentration of asparagine was increased in both the nodules and the xylem sap. Plants in the +CO2 treatment tended to develop nodules with higher %N concentration and individual activity. In a parallel experiment on plants with inefficient nodules (fix-) the +CO2 treatment remained without effect. Our data support the thesis that nodule CO2 fixation is pivotal for efficient nitrogen fixation. It is concluded that strategies which enhance nodule CO2 fixation will improve nitrogen fixation and nodule formation. Moreover, sufficient CO2 application to roots and nodules is necessary for growth and efficient nitrogen fixation in hydroponic and aeroponic growth systems.


Assuntos
Dióxido de Carbono/metabolismo , Medicago sativa/metabolismo , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/metabolismo , Aminoácidos/metabolismo , Biomassa , Medicago sativa/crescimento & desenvolvimento , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/anatomia & histologia , Nodulação/fisiologia , Brotos de Planta/metabolismo , Xilema/metabolismo
13.
Physiol Plant ; 140(1): 21-31, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20444196

RESUMO

The objective of this study was to assess whether a whole plant N-feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity. Plants in nutrient solution were supplied with sufficient (9 microM) control, limiting (1 microM) phosphorus or 3 mM NH(4)NO(3) (downregulated nodule activity). Low phosphorus and the application of NH(4)NO(3) reduced per plant and specific nitrogenase activity (H(2) evolution). At day 64 of growth, phloem exudates were collected from cuts of the shoot base. The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity. The increase in the downregulated treatments was almost exclusively the result of a higher proportion of asparagine in both phloem exudates and nodules. Leaf labeling with (15)N showed that nitrogen from the leaves is retranslocated to nodules. An artificial phloem feeding with asparagine resulted in an increased concentration of asparagine in nodules and a decreased nodule activity. A possible role of asparagine in an N-feedback regulation of nitrogen fixation in M. truncatula is discussed.


Assuntos
Asparagina/metabolismo , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Medicago truncatula/crescimento & desenvolvimento , Nitratos/metabolismo , Isótopos de Nitrogênio/análise , Floema/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/metabolismo
14.
Plant Sci ; 292: 110383, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005388

RESUMO

Symbiotic nitrogen fixation (SNF) has a high energetic cost for legume plants; legumes thus reduce SNF when soil N is available. The present study aimed to increase our understanding regarding the impacts of the two principal forms of available N in soils (ammonium and nitrate) on SNF. We continuously measured the SNF of Medicago truncatula under controlled conditions. This permitted nodule sampling for comparative transcriptome profiling at points connected to the nodules' reaction following ammonium or nitrate applications. The N component of both ions systemically induced a rhythmic pattern of SNF, while the activity in control plants remained constant. This rhythmic activity reduced the per-day SNF. The nitrate ion had additional local effects; the more pronounced were a strong downregulation of leghaemoglobin, nodule cysteine-rich (NCR) peptides and nodule-enhanced nicotianamine synthase (neNAS). The neNAS has proven to be of importance for nodule functioning. Although other physiological impacts of nitrate on nodules were observed (e.g. nitrosylation of leghaemoglobin), the main effect was a rapid ion-specific and organ-specific change in gene expression levels. Contrastingly, during the first hours after ammonium applications, the transcriptome remained virtually unaffected. Therefore, nitrate-induced genes could be key for increasing the nitrate tolerance of SNF.


Assuntos
Compostos de Amônio/metabolismo , Medicago truncatula/fisiologia , Nitratos/metabolismo , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Medicago truncatula/microbiologia , Nódulos Radiculares de Plantas/microbiologia
15.
Plants (Basel) ; 8(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489914

RESUMO

In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.

16.
Front Plant Sci ; 9: 614, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868070

RESUMO

Nickel (Ni)-a component of urease and hydrogenase-was the latest nutrient to be recognized as an essential element for plants. However, to date there are no records of Ni deficiency for annual species cultivated under field conditions, possibly because of the non-appearance of obvious and distinctive symptoms, i.e., a hidden (or latent) deficiency. Soybean, a crop cultivated on soils poor in extractable Ni, has a high dependence on biological nitrogen fixation (BNF), in which Ni plays a key role. Thus, we hypothesized that Ni fertilization in soybean genotypes results in a better nitrogen physiological function and in higher grain production due to the hidden deficiency of this micronutrient. To verify this hypothesis, two simultaneous experiments were carried out, under greenhouse and field conditions, with Ni supply of 0.0 or 0.5 mg of Ni kg-1 of soil. For this, we used 15 soybean genotypes and two soybean isogenic lines (urease positive, Eu3; urease activity-null, eu3-a, formerly eu3-e1). Plants were evaluated for yield, Ni and N concentration, photosynthesis, and N metabolism. Nickel fertilization resulted in greater grain yield in some genotypes, indicating the hidden deficiency of Ni in both conditions. Yield gains of up to 2.9 g per plant in greenhouse and up to 1,502 kg ha-1 in field conditions were associated with a promoted N metabolism, namely, leaf N concentration, ammonia, ureides, urea, and urease activity, which separated the genotypes into groups of Ni responsiveness. Nickel supply also positively affected photosynthesis in the genotypes, never causing detrimental effects, except for the eu3-a mutant, which due to the absence of ureolytic activity accumulated excess urea in leaves and had reduced yield. In summary, the effect of Ni on the plants was positive and the extent of this effect was controlled by genotype-environment interaction. The application of 0.5 mg kg-1 of Ni resulted in safe levels of this element in grains for human health consumption. Including Ni applications in fertilization programs may provide significant yield benefits in soybean production on low Ni soil. This might also be the case for other annual crops, especially legumes.

17.
Sci Rep ; 7: 46264, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393902

RESUMO

Nitrogen fixation of Medicago truncatula is regulated by the nitrogen status of leaves through inducing a repeatedly occurring 24-h nodule activity rhythm that reduces per day nitrogen fixation. The hypotheses of the present study were that (1) long-term moderate whole-plant P deficiency in Medicago truncatula induces an according daily rhythm in nitrogenase activity comparable to that induced by nitrate application and (2), the changes in the nodule transcriptome that go along with a strong nitrogenase activity decline during the afternoon would be similar under P deficiency or after nitrate supply. The nodules of plants in a low P treatment developed a rhythmic pattern of activity that resembled the pattern following nitrate application. A comprehensive, RNAseq-based comparative transcriptome profiling of nodules during a repeated part of the rhythm revealed similarities between P deficiency versus nitrate supply. Under both treatments, the formation of nitrogenase was targeted by a reduction in the expression of genes for nodule-specific cysteine-rich peptides (NCR), and possibly also by a disturbance of the inner cell iron allocation. A strong reduction in the expression of leghemoglobin is likely to have restricted the supply of oxygen for respiration.


Assuntos
Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitratos/metabolismo , Fixação de Nitrogênio , Fósforo/deficiência , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Medicago truncatula/crescimento & desenvolvimento , Fósforo/metabolismo
18.
J Plant Physiol ; 163(10): 987-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16876908

RESUMO

The objective of the present study was to elucidate whether remobilized N from lower leaves is involved in causing the drop in N(2) fixation during pod-filling in common bean (Phaseolus vulgaris L). Moreover, we addressed the question of whether remobilized N from lower leaves would reach the nodules. Nodulated common bean plants were grown in a growth chamber in quartz sand. During a 2-week period, at vegetative and at reproductive growth, 50% of the leaves (lower part) were either excised or individually darkened, thereby removing the same photosynthetic capacity yet allowing N to be remobilized from the darkened leaves. Moreover, at the vegetative growth period, three lower leaves per plants were (15)N labelled by applying (15)NH(4)NO(3) prior to imposing the darkening treatment. Leaf darkening at vegetative growth induced N remobilization as well as reduced N(2)-fixation rates and growth. Leaf excision at reproductive growth enhanced N(2) fixation. Changes in N(2)-fixation rates were in all cases the result of altered growth rates, while the % N in the whole plant and in various plant parts remained conserved. Directly after leaf labelling, but also at the end of the vegetative growth period, substantial amounts of (15)N from the leaves could be recovered in nodules in the control, and in higher amounts in the leaf-darkening treatment. It is proposed that nitrogen from leaves circulates within the plant via nodules, and that the strength or composition of this circular flow may be the signal for a putative N-feedback effect.


Assuntos
Retroalimentação Fisiológica , Fixação de Nitrogênio/fisiologia , Phaseolus/metabolismo , Folhas de Planta/fisiologia , Nitrogênio/análise , Nitrogênio/metabolismo , Phaseolus/química , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/química
19.
Front Plant Sci ; 6: 1133, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779207

RESUMO

Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.

20.
J Plant Physiol ; 160(5): 531-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12806782

RESUMO

Various legume species show a marked decline in N2 fixation during pod-filling. The objective of this study was to clarify whether this is a result of impaired nodule assimilate supply or whether re-moblised N from senescing lower leaves initiates the phenomenon through an N-feedback impact. In model experiments on pea and broad bean plants during vegetative and reproductive growth, 30 or 60% of green leaves were either excised or individually darkened, thus removing the same photosynthetic capacity yet allowing N to be re-mobilised from darkened leaves. Results are consistent with an N-feedback down-regulation of nitrogenase in that 1. leaf darkening reduced N2 fixation to a greater extent then excision, 2. darkened leaves quickly senesced and N from these leaves was re-mobilised in substantial amounts, 3. N and amino acids (AA) accumulated and C/N ratios decreased in nodules of plants with darkened leaves versus excision or untreated controls. These findings further support various indirect evidence that nitrogenase is regulated by an N-feedback mechanism that is not yet fully understood.


Assuntos
Fabaceae/metabolismo , Frutas/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Regulação para Baixo , Retroalimentação Fisiológica , Nitrogenase/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA