Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1455-1466, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166210

RESUMO

The enzyme FeFe-hydrogenase catalyzes H2 evolution and oxidation at an active site that consists of a [4Fe-4S] cluster bridged to a [Fe2(CO)3(CN)2(azadithiolate)] subsite. Previous investigations of its mechanism were mostly conducted on a few "prototypical" FeFe-hydrogenases, such as that from Chlamydomonas reinhardtii(Cr HydA1), but atypical hydrogenases have recently been characterized in an effort to explore the diversity of this class of enzymes. We aim at understanding why prototypical hydrogenases are active in either direction of the reaction in response to a small deviation from equilibrium, whereas the homologous enzyme from Thermoanaerobacter mathranii (Tam HydS) shows activity only under conditions of very high driving force, a behavior that was referred to as "irreversible catalysis". We follow up on previous spectroscopic studies and recent developments in the kinetic modeling of bidirectional reactions to investigate and compare the catalytic cycles of Cr HydA1 and Tam HydS under conditions of direct electron transfer with an electrode. We compare the hypothetical catalytic cycles described in the literature, and we show that the observed changes in catalytic activity as a function of potential, pH, and H2 concentration can be explained with the assumption that the same catalytic mechanism applies. This helps us identify which variations in properties of the catalytic intermediates give rise to the distinct "reversible" or "irreversible" catalytic behaviors.


Assuntos
Chlamydomonas reinhardtii , Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxirredução , Transporte de Elétrons , Análise Espectral , Hidrogênio/química
2.
Front Microbiol ; 14: 1179607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502399

RESUMO

Hydrogen is considered one of the key enablers of the transition towards a sustainable and net-zero carbon economy. When produced from renewable sources, hydrogen can be used as a clean and carbon-free energy carrier, as well as improve the sustainability of a wide range of industrial processes. Photobiological hydrogen production is considered one of the most promising technologies, avoiding the need for renewable electricity and rare earth metal elements, the demands for which are greatly increasing due to the current simultaneous electrification and decarbonization goals. Photobiological hydrogen production employs photosynthetic microorganisms to harvest solar energy and split water into molecular oxygen and hydrogen gas, unlocking the long-pursued target of solar energy storage. However, photobiological hydrogen production has to-date been constrained by several limitations. This review aims to discuss the current state-of-the art regarding hydrogenase-driven photobiological hydrogen production. Emphasis is placed on engineering strategies for the expression of improved, non-native, hydrogenases or photosynthesis re-engineering, as well as their combination as one of the most promising pathways to develop viable large-scale hydrogen green cell factories. Herein we provide an overview of the current knowledge and technological gaps curbing the development of photobiological hydrogenase-driven hydrogen production, as well as summarizing the recent advances and future prospects regarding the expression of non-native hydrogenases in cyanobacteria and green algae with an emphasis on [FeFe] hydrogenases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA