RESUMO
BACKGROUND: Epigenetic regulation of vascular remodeling in pulmonary hypertension (PH) is poorly understood. Transcription regulating, histone acetylation code alters chromatin accessibility to promote transcriptional activation. Our goal was to identify upstream mechanisms that disrupt epigenetic equilibrium in PH. METHODS: Human pulmonary artery smooth muscle cells (PASMCs), human idiopathic pulmonary arterial hypertension (iPAH):human PASMCs, iPAH lung tissue, failed donor lung tissue, human pulmonary microvascular endothelial cells, iPAH:PASMC and non-iPAH:PASMC RNA-seq databases, NanoString nCounter, and cleavage under targets and release using nuclease were utilized to investigate histone acetylation, hyperacetylation targets, protein and gene expression, sphingolipid activation, cell proliferation, and gene target identification. SPHK2 (sphingosine kinase 2) knockout was compared with control C57BL/6NJ mice after 3 weeks of hypoxia and assessed for indices of PH. RESULTS: We identified that Human PASMCs are vulnerable to the transcription-promoting epigenetic mediator histone acetylation resulting in alterations in transcription machinery and confirmed its pathological existence in PH:PASMC cells. We report that SPHK2 is elevated as much as 20-fold in iPAH lung tissue and is elevated in iPAH:PASMC cells. During PH pathogenesis, nuclear SPHK2 activates nuclear bioactive lipid S1P (sphingosine 1-phosphate) catalyzing enzyme and mediates transcription regulating histone H3K9 acetylation (acetyl histone H3 lysine 9 [Ac-H3K9]) through EMAP (endothelial monocyte activating polypeptide) II. In iPAH lungs, we identified a 4-fold elevation of the reversible epigenetic transcription modulator Ac-H3K9:H3 ratio. Loss of SPHK2 inhibited hypoxic-induced PH and Ac-H3K9 in mice. We discovered that pulmonary vascular endothelial cells are a priming factor of the EMAP II/SPHK2/S1P axis that alters the acetylome with a specificity for PASMC, through hyperacetylation of histone H3K9. Using cleavage under targets and release using nuclease, we further show that EMAP II-mediated SPHK2 has the potential to modify the local transcription machinery of pluripotency factor KLF4 (Krüppel-like factor 4) by hyperacetylating KLF4 Cis-regulatory elements while deletion and targeted inhibition of SPHK2 rescues transcription altering Ac-H3K9. CONCLUSIONS: SPHK2 expression and its activation of the reversible histone H3K9 acetylation in human pulmonary artery smooth muscle cell represent new therapeutic targets that could mitigate PH vascular remodeling.
Assuntos
Hipertensão Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Histonas/metabolismo , Epigênese Genética , Células Endoteliais/metabolismo , Remodelação Vascular , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Proliferação de Células , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Células CultivadasRESUMO
Cholangiocarcinoma (CCA), an aggressive biliary tract cancer, carries a grim prognosis with a 5-year survival rate of 5%-15%. Standard chemotherapy regimens for CCA, gemcitabine plus cisplatin (GemCis) or its recently approved combination with durvalumab demonstrate dismal clinical activity, yielding a median survival of 12-14 months. Increased serotonin accumulation and secretion have been implicated in the oncogenic activity of CCA. This study investigated the therapeutic efficacy of telotristat ethyl (TE), a tryptophan hydroxylase inhibitor blocking serotonin biosynthesis, in combination with standard chemotherapies in preclinical CCA models. Nab-paclitaxel (NPT) significantly enhanced animal survival (60%), surpassing the marginal effects of TE (11%) or GemCis (9%) in peritoneal dissemination xenografts. Combining TE with GemCis (26%) or NPT (68%) further increased survival rates. In intrahepatic (iCCA), distal (dCCA) and perihilar (pCCA) subcutaneous xenografts, TE exhibited substantial tumour growth inhibition (41%-53%) compared to NPT (56%-69%) or GemCis (37%-58%). The combination of TE with chemotherapy demonstrated enhanced tumour growth inhibition in all three cell-derived xenografts (67%-90%). PDX studies revealed TE's marked inhibition of tumour growth (40%-73%) compared to GemCis (80%-86%) or NPT (57%-76%). Again, combining TE with chemotherapy exhibited an additive effect. Tumour cell proliferation reduction aligned with tumour growth inhibition in all CDX and PDX tumours. Furthermore, TE treatment consistently decreased serotonin levels in all tumours under all therapeutic conditions. This investigation decisively demonstrated the antitumor efficacy of TE across a spectrum of CCA preclinical models, suggesting that combination therapies involving TE, particularly for patients exhibiting serotonin overexpression, hold the promise of improving clinical CCA therapy.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Triptofano Hidroxilase , Ensaios Antitumorais Modelo de Xenoenxerto , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Animais , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Camundongos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Gencitabina , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sinergismo Farmacológico , Modelos Animais de Doenças , Serotonina/metabolismo , FemininoRESUMO
Elevated expression of multiple growth factors and receptors including c-Met and VEGFR has been reported in gastric adenocarcinoma (GAC) and thus provides a potentially useful therapeutic target. The therapeutic efficacy of foretinib, a c-Met/VEGFR2 inhibitor, was determined in combination with nanoparticle paclitaxel (NPT) in GAC. Animal studies were conducted in NOD/SCID mice in subcutaneous and peritoneal dissemination xenografts. The mechanism of action was assessed by Immunohistochemical and Immunoblot analyses. In c-Met overexpressing MKN-45 cell-derived xenografts, NPT and foretinib demonstrated inhibition in tumour growth, while NPT plus foretinib showed additive effects. In c-Met low-expressing SNU-1 or patient-derived xenografts, the foretinib effect was smaller, while NPT had a similar effect compared with MKN-45, as NPT plus foretinib still exhibited an additive response. Median mice survival was markedly improved by NPT (83%), foretinib (100%) and NPT plus foretinib (230%) in peritoneal dissemination xenografts. Subcutaneous tumour analyses exhibited that foretinib increased cancer cell death and decreased cancer cell proliferation and tumour vasculature. NPT and foretinib suppressed the proliferation of GAC cells in vitro and had additive effects in combination. Further, foretinib caused a dramatic decrease in phosphorylated forms of c-Met, ERK, AKT and p38. Foretinib led to a decrease in Bcl-2, and an increase in p27, Bax, Bim, cleaved PARP-1 and cleaved caspase-3. Thus, these findings highlight the antitumour impact of simultaneous suppression of c-Met and VEGFR2 signalling in GAC and its potential to enhance nanoparticle paclitaxel response. This therapeutic approach might lead to a clinically beneficial combination to increase GAC patients' survival.
Assuntos
Anilidas/farmacologia , Sinergismo Farmacológico , Nanopartículas/administração & dosagem , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Proliferação de Células , Combinação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/química , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
During postnatal lung development, metabolic changes that coincide with stages of alveolar formation are poorly understood. Responding to developmental and environmental factors, metabolic changes can be rapidly and adaptively altered. The objective of the present study was to determine biological and technical determinants of metabolic changes during postnatal lung development. Over 118 metabolic features were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, Sciex QTRAP 5500 Triple Quadrupole). Biological determinants of metabolic changes were the transition from the postnatal saccular to alveolar stages and exposure to 85% hyperoxia, an environmental insult. Technical determinants of metabolic identification were brevity and temperature of harvesting, both of which improved metabolic preservation within samples. Multivariate statistical analyses revealed the transition between stages of lung development as the period of major metabolic alteration. Of three distinctive groups that clustered by age, the saccular stage was identified by its enrichment of both glycolytic and fatty acid derivatives. The critical transition between stages of development were denoted by changes in amino acid derivatives. Of the amino acid derivatives that significantly changed, a majority were linked to metabolites of the one-carbon metabolic pathway. The enrichment of one-carbon metabolites was independent of age and environmental insult. Temperature was also found to significantly influence the metabolic levels within the postmortem sampled lung, which underscored the importance of methodology. Collectively, these data support not only distinctive stages of metabolic change but also highlight amino acid metabolism, in particular one-carbon metabolites as metabolic signatures of the early postnatal lung.
Assuntos
Carbono/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Pulmão/citologia , Pulmão/metabolismo , Metaboloma , Animais , Animais Recém-Nascidos , Cromatografia Líquida , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em TandemRESUMO
Proper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1-/- mutant mice. Mating of Aimp1+/- produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1-/- pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1-/- lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1-/- mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.
Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Pulmão/metabolismo , Pulmão/fisiologia , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Feminino , Junções Intercelulares/metabolismo , Junções Intercelulares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Macrophages are important responders to environmental changes such as secreted factors. Among the secreted factors in injured tissues, the highly conserved endothelial monocyte activating polypeptide II (EMAP II) has been characterized to limit vessel formation, to be locally expressed near sites of injury labeling it a "find-me" signal, and to recruit macrophages and neutrophils. The molecular mechanisms mediated by EMAP II within macrophages once they are recruited are unknown. In this study, using a model of partially activated, recruited thioglycollate-elicited peritoneal macrophages, a transient, transcription profile of key functional genes in macrophages exposed to EMAP II was characterized. We found that EMAP II-mediated changes were elicited mainly through signal transducer and activator of transcription 3 (STAT3) as evidenced by increased Y705 phosphorylation and changes in activity and upstream of it, Janus associated kinase (JAK)1/2 upstream. Both inhibition of JAK1/2 and knockdown of Stat3 abrogated a subset of genes that are upregulated by EMAP II. Our results identify a rapid EMAP II-mediated STAT3 activation that coincides with altered pro- and anti-inflammatory gene expression in macrophages.
Assuntos
Citocinas/farmacologia , Inibidores do Crescimento/farmacologia , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Proteínas de Neoplasias/farmacologia , Proteínas de Ligação a RNA/farmacologia , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica/fisiologia , Animais , Células HEK293 , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transcrição Gênica/efeitos dos fármacosRESUMO
Matrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti-MMP9 antibody (αMMP9) was evaluated in combination with nab-paclitaxel (NPT)-based standard cytotoxic therapy in pre-clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA-Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2-week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six-week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti-MMP9 antibody increased the levels of tumour-associated IL-28 (1.5-fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti-MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti-MMP9 antibody can exert specific stroma-directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy.
Assuntos
Albuminas/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Metaloproteinase 9 da Matriz , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Actinas/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/metabolismo , RNA-Seq , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Vimentina/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Formation of the epithelial cyst involves the establishment of apical-basolateral polarity through a series of cellular interactions that are in part mediated by the extracellular matrix (ECM). We report that in a three-dimensional multi-cellular self-assembly model of lung development, α5 integrin regulates epithelial cyst formation through organization of soluble fibronectin matrix into insoluble fibrils through a process called fibrillogenesis. RESULTS: Dissociated murine embryonic lung cells self-assemble into three-dimensional pulmonary bodies that are dependent on α5ß1 integrin mediated fibrillogenesis for cell-cell mediated self-assembly: compaction and epithelial cyst formation. Knockdown of α5 integrin resulted in a significant increase in another mediator of fibrillogenesis, αV integrin. Compensatory increased expression of another mediator of fibrillogenesis, αV integrin, was not sufficient to normalize epithelial cyst formation. Loss of α5 integrin-mediated fibrillogenesis perturbed the ability of clustered epithelial cells to establish clear polarity, loss of epithelial cell pyramidal shape, and disrupted apical F-actin-rich deposition. Lack of rich central epithelial localization of F-actin cytoskeleton and Podocalyxin suggests that loss of α5 integrin-mediated fibrillogenesis interferes with the normal cytoskeleton organization that facilitates epithelial cysts polarization. CONCLUSIONS: We conclude that lung epithelial cyst formation in development is mediated in part by α5ß1 integrin dependent fibrillogenesis. Developmental Dynamics 246:475-484, 2016. © 2017 Wiley Periodicals, Inc.
Assuntos
Cistos/ultraestrutura , Integrina alfa5beta1/fisiologia , Pulmão/citologia , Actinas , Animais , Polaridade Celular , Cistos/etiologia , Citoesqueleto , Células Epiteliais/citologia , Fibronectinas/metabolismo , CamundongosRESUMO
Myeloid cells are key factors in the progression of bronchopulmonary dysplasia (BPD) pathogenesis. Endothelial monocyte-activating polypeptide II (EMAP II) mediates myeloid cell trafficking. The origin and physiological mechanism by which EMAP II affects pathogenesis in BPD is unknown. The objective was to determine the functional consequences of elevated EMAP II levels in the pathogenesis of murine BPD and to investigate EMAP II neutralization as a therapeutic strategy. Three neonatal mouse models were used: (1) BPD (hyperoxia), (2) EMAP II delivery, and (3) BPD with neutralizing EMAP II antibody treatments. Chemokinic function of EMAP II and its neutralization were assessed by migration in vitro and in vivo. We determined the location of EMAP II by immunohistochemistry, pulmonary proinflammatory and chemotactic gene expression by quantitative polymerase chain reaction and immunoblotting, lung outcome by pulmonary function testing and histological analysis, and right ventricular hypertrophy by Fulton's Index. In BPD, EMAP II initially is a bronchial club-cell-specific protein-derived factor that later is expressed in galectin-3+ macrophages as BPD progresses. Continuous elevated expression corroborates with baboon and human BPD. Prolonged elevation of EMAP II levels recruits galectin-3+ macrophages, which is followed by an inflammatory state that resembles a severe BPD phenotype characterized by decreased pulmonary compliance, arrested alveolar development, and signs of pulmonary hypertension. In vivo pharmacological EMAP II inhibition suppressed proinflammatory genes Tnfa, Il6, and Il1b and chemotactic genes Ccl2 and Ccl9 and reversed the severe BPD phenotype. EMAP II is sufficient to induce macrophage recruitment, worsens BPD progression, and represents a targetable mechanism of BPD development.
RESUMO
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1-70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147-312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1-70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1-70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.
Assuntos
Arginina-tRNA Ligase/metabolismo , Citocinas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neurofilamentos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Citocinas/química , Citocinas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Agregados Proteicos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de AminoácidosRESUMO
Promoting angiogenesis is a key therapeutic target for protection from chronic ischemic cardiac injury. Endothelial-Monocyte-Activating-Polypeptide-II (EMAP II) protein, a tumor-derived cytokine having anti-angiogenic properties in cancer, is markedly elevated following myocardial ischemia. We examined whether neutralization of EMAP II induces angiogenesis and has beneficial effects on myocardial function and structure after chronic myocardial infarction (MI). EMAP II antibody (EMAP II AB), vehicle, or non-specific IgG (IgG) was injected ip at 30 min and 3, 6, and 9 days after permanent coronary artery occlusion in mice. EMAP II AB, compared with vehicle or non-specific antibody, significantly, p<0.05, improved the survival rate after MI, reduced scar size and attenuated the development of heart failure, i.e., left ventricular ejection fraction was significantly higher in EMAP II AB group, fibrosis was reduced by 24%, and importantly, more myocytes were alive in EMAP II AB group in the infarct area. In support of an angiogenic mechanism, capillary density (193/HPF vs. 172/HPF), doubling of the number of proliferating endothelial cells, and angiogenesis related biomarkers were upregulated in mice receiving EMAP II AB treatment as compared to IgG. Furthermore, EMAP II AB prevented EMAP II protein inhibition of in vitro tube formation in HUVECs. We conclude that blockade of EMAP II induces angiogenesis and improves cardiac function following chronic MI, resulting in reduced myocardial fibrosis and scar formation and increased capillary density and preserved viable myocytes in the infarct area.
Assuntos
Citocinas/antagonistas & inibidores , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Proteínas de Neoplasias/antagonistas & inibidores , Neovascularização Fisiológica , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Anticorpos/farmacologia , Doença Crônica , Citocinas/imunologia , Fibrose , Coração/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas de Neoplasias/imunologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas de Ligação a RNA/imunologia , Análise de Sobrevida , Ultrassonografia , Regulação para Cima/efeitos dos fármacosRESUMO
During lung development and injury, messenger RNA (mRNA) transcript levels of genes fluctuate over both space and time. Quantitative PCR (qPCR) is a highly sensitive, widely used technique to measure the mRNA levels. The sensitivity of this technique can be disadvantageous and errors amplified when each qPCR assay is not validated. In contrast to other organs, lungs have high RNase activity, resulting in less than optimal RNA integrity. We implemented a strategy to address these limitations in developing and injured lungs. Parameters were established and a filter designed that optimized amplicon length and included or excluded samples based on RNA integrity. This approach was illustrated and validated by measuring mRNA levels including Vegf-a in newborn mouse lungs that were injured by 85% oxygen (hyperoxia) for 12 days and compared with control (normoxia). We demonstrate that, in contrast to contradictory Vegf-a expression when normalized to the least suitable housekeeping genes, application of this filter and normalization to most suitable three housekeeping genes, Hprt, Eef2, and Rpl13a, gave reproducible Vegf-a expression, thus corroborating the sample filter. Accordingly, both short amplicon length and proper normalization to ranked, evaluated genes minimized erroneous fluctuation and qPCR amplification issues associated with nonideal RNA integrity in injured and developing lungs. Furthermore, our work uncovers how RNA integrity, purity, amplicon length, and discovery of stable candidate reference genes enhance precision of qPCR results and utilizes the advantages of qPCR in developmental studies.
Assuntos
Perfilação da Expressão Gênica , Hiperóxia/metabolismo , Pulmão/metabolismo , Oxigênio/toxicidade , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Animais Recém-Nascidos , Hiperóxia/etiologia , Hiperóxia/patologia , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co-dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis.
Assuntos
Displasia Broncopulmonar/metabolismo , Citocinas/metabolismo , Proteínas de Neoplasias/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Doença Crônica , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologiaRESUMO
Pulmonary Hypertension (PH) is a terminal disease characterized by severe pulmonary vascular remodeling. Unfortunately, targeted therapy to prevent disease progression is limited. Here, the vascular cell populations that contribute to the molecular and morphological changes of PH in conjunction with current animal models for studying vascular remodeling in PH will be examined. The status quo of epigenetic targeting for treating vascular remodeling in different PH subtypes will be dissected, while parallel epigenetic threads between pulmonary hypertension and pathogenic cancer provide insight into future therapeutic PH opportunities.
Assuntos
Hipertensão Pulmonar , Animais , Hipertensão Pulmonar/patologia , Remodelação Vascular/genética , Pulmão/patologia , Modelos Animais , Epigênese GenéticaRESUMO
Alveolar growth abnormalities and severe respiratory dysfunction are often fatal. Identifying mechanisms that control epithelial proliferation and enlarged, poorly septated airspaces is essential in developing new therapies for lung disease. The membrane-bound ligand ephrin-B2 is strongly expressed in lung epithelium, and yet in contrast to its known requirement for arteriogenesis, considerably less is known regarding the function of this protein in the epithelium. We hypothesize that the vascular mediator ephrin-B2 governs alveolar growth and mechanics beyond the confines of the endothelium. We used the in vivo manipulation of ephrin-B2 reverse signaling to determine the role of this vascular mediator in the pulmonary epithelium and distal lung mechanics. We determined that the ephrin-B2 gene (EfnB2) is strongly expressed in alveolar Type 2 cells throughout development and into adulthood. The role of ephrin-B2 reverse signaling in the lung was assessed in Efnb2(LacZ/6YFΔV) mutants that coexpress the intracellular truncated ephrin-B2-ß-galactosidase fusion and an intracellular point mutant ephrin-B2 protein that is unable to become tyrosine-phosphorylated or to interact with either the SH2 or PDZ domain-containing downstream signaling proteins. In these viable mice, we observed pulmonary hypoplasia and altered pulmonary mechanics, as evidenced by a marked reduction in lung compliance. Associated with the reduction in lung compliance was a significant increase in insoluble fibronectin (FN) basement membrane matrix assembly with FN deposition, and a corresponding increase in the α5 integrin receptor required for FN fibrillogenesis. These experiments indicate that ephrin-B2 reverse signaling mediates distal alveolar formation, fibrillogenesis, and pulmonary compliance.
Assuntos
Efrina-B2/metabolismo , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Complacência Pulmonar/fisiologia , Transdução de Sinais/fisiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/fisiopatologia , Animais , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/fisiologia , Efrina-B2/genética , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Fibronectinas/genética , Integrina alfa5beta1/genética , Pulmão/anormalidades , Pulmão/metabolismo , Pulmão/fisiopatologia , Complacência Pulmonar/genética , Pneumopatias/genética , Pneumopatias/metabolismo , Pneumopatias/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Domínios PDZ/genética , Fosforilação/genética , Mutação Puntual/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiologia , Transdução de Sinais/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismoRESUMO
Gemcitabine has limited clinical benefits in pancreatic ductal adenocarcinoma. The solvent-based traditional taxanes docetaxel and paclitaxel have not shown clinical results superior to gemcitabine. Nab-paclitaxel, a water-soluble albumin-bound paclitaxel, may carry superior distribution properties into the tumor microenvironment and has shown efficacy in multiple tumor types. We evaluated nab-paclitaxel effects compared with gemcitabine or docetaxel. For pancreatic ductal adenocarcinoma cells AsPC-1, BxPC-3, MIA PaCa-2 and Panc-1, gemcitabine IC50 ranged from 494nM to 23.9 µM; docetaxel IC50 range was from 5 to 34nM; nab-paclitaxel IC50 range was from 243nM to 4.9 µM. Addition of IC25 dose of docetaxel or nab-paclitaxel decreased gemcitabine IC50. Net tumor growth inhibition after gemcitabine, docetaxel or nab-paclitaxel was 67, 31 and 72%, which corresponded with intratumoral proliferative and apoptotic indices. Tumor stromal density was decreased by nab-paclitaxel and to a lesser extent by docetaxel as measured through reduction in α-smooth muscle actin, S100A4 and collagen 1 expression. Animal survival was prolonged after nab-paclitaxel treatment (41 days, P < 0.002) compared with gemcitabine (32 days, P = 0.005), docetaxel (32 days, P = 0.005) and controls (20 days). Survival in nab-paclitaxel/gemcitabine and docetaxel/gemcitabine sequential treatment groups was not superior to nab-paclitaxel alone. Low-dose combination of gemcitabine with nab-paclitaxel or docetaxel was more effective compared with controls or gemcitabine alone but not superior to regular dose nab-paclitaxel alone. Combination treatment of gemcitabine+nab-paclitaxel or gemcitabine+docetaxel increased gemcitabine concentration in plasma and tumor. The superior antitumor activity of nab-paclitaxel provides a strong rationale for considering nab-paclitaxel as first-line monotherapy in pancreatic ductal adenocarcinoma.
Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Experimentais/tratamento farmacológico , Paclitaxel/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Taxoides/farmacologia , Paclitaxel Ligado a Albumina , Albuminas/administração & dosagem , Albuminas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Docetaxel , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Experimentais/mortalidade , Neoplasias Experimentais/patologia , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Estatmina/metabolismo , Células Estromais/efeitos dos fármacos , Taxoides/administração & dosagem , Tubulina (Proteína)/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
BACKGROUND: Peritoneal dissemination of gastric cancer is a common reason for unresectability, a frequent recurrence mechanism, and a common cause for death. The present study was performed to test peritoneal dissemination gastric cancer xenografts mouse models that would support survival outcome analyses. MATERIALS AND METHODS: Human gastric cancer cell lines AGS, NCI-N87, and SNU-16 were intraperitoneally injected into nude mice and severe combined immunodeficiency (SCID) mice. The peritoneal tumor formation and mouse survival were compared among different groups. Mice were treated with oxaliplatin (5 mg/kg) and NVP-BEZ235 (10 mg/kg). RESULTS: The formation rate of peritoneal cancer after intraperitoneal injection of 5 × 10(6) SNU16, NCI-N87, and AGS cells was 2/8, 6/8, and 0/8 in nude mice, and 6/6, 6/6, and 0/6 in SCID mice, respectively. Median animal survival with peritoneal dissemination was 74 d for NCI-N87 cells (10 × 10(6)), 95 d for SNU16 cells (10 × 10(6)), 78 d for SNU16 cells (20 × 10(6)), and 44 d for SNU16 cells (40 × 10(6)). In a therapeutic experiment with 40 × 10(6) SNU16 cells, animal survival was significantly improved by oxaliplatin treatment compared with the control group (58.5 d versus 45 d, P < 0.001), but not by NVP-BEZ235 (48 d versus 45 d, P = 0.249) treatment. In the accompanying subcutaneous SNU16 mouse model, relative tumor volume compared with controls was not significantly decreased by oxaliplatin treatment (P = 0.151) but by NVP-BEZ235 therapy (P = 0.008). CONCLUSIONS: Peritoneal gastric cancer xenografts were successfully established after intraperitoneal injection NCI-N87 and SNU16 cells. These findings provide a useful survival outcome assessment model for experimental gastric cancer research.
Assuntos
Neoplasias Peritoneais/mortalidade , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/administração & dosagem , Camundongos , Camundongos SCID , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Quinolinas/administração & dosagem , Neoplasias Gástricas/tratamento farmacológicoRESUMO
Background: Gastric adenocarcinoma (GAC) is the fourth leading cause of cancer death worldwide. Systemic chemotherapy is a preferred treatment option for advanced and recurrent GAC, but response rates and survival prolongation remain limited. Tumor angiogenesis plays a critical role in GAC growth, invasion and metastasis. We investigated the antitumor efficacy of nintedanib, a potent triple angiokinase inhibitor for VEGFR-1/2/3, PDGFR-α/ß and FGFR-1/2/3, alone or in combination with chemotherapy, in preclinical models of GAC. Methods: Animal survival studies were performed in peritoneal dissemination xenografts in NOD/SCID mice using human GAC cell lines MKN-45 and KATO-III. Tumor growth inhibition studies were performed in subcutaneous xenografts in NOD/SCID mice using human GAC cell lines MKN-45 and SNU-5. The mechanistic evaluation involved Immunohistochemistry analyses in tumor tissues obtained from subcutaneous xenografts. In vitro cell viability assays were performed using a colorimetric WST-1 reagent. Results: In MKN-45 GAC cell-derived peritoneal dissemination xenografts, animal survival was improved by nintedanib (33%), docetaxel (100%) and irinotecan (181%), while oxaliplatin, 5-FU and epirubicin had no effect. The addition of nintedanib to docetaxel (157%) or irinotecan (214%) led to a further extension in animal survival. In KATO-III GAC cell-derived xenografts carrying FGFR2 gene amplification, nintedanib extended survival by 209%. Again, the addition of nintedanib further enhanced the animal survival benefits of docetaxel (273%) and irinotecan (332%). In MKN-45 subcutaneous xenografts, nintedanib, epirubicin, docetaxel and irinotecan reduced tumor growth (range: 68-87%), while 5-FU and oxaliplatin had a smaller effect (40%). Nintedanib addition to all chemotherapeutics demonstrated a further reduction in tumor growth. Subcutaneous tumor analysis revealed that nintedanib attenuated tumor cell proliferation, reduced tumor vasculature and increased tumor cell death. Conclusion: Nintedanib showed notable antitumor efficacy and significantly improved taxane or irinotecan chemotherapy responses. These findings indicate that nintedanib, alone and in combination with a taxane or irinotecan, has the potential for improving clinical GAC therapy.
RESUMO
Gemcitabine has limited clinical benefits for pancreatic ductal adenocarcinoma (PDAC). The phosphatidylinositol-3-kinase (PI3K)/AKT and mammalian target of rapamycin (mTOR) signaling pathways are frequently dysregulated in PDAC. We investigated the effects of NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, in combination with gemcitabine and endothelial monocyte activating polypeptide II (EMAP) in experimental PDAC. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival experiments were performed in murine xenografts. BEZ235 caused a decrease in phospho-AKT and phospho-mTOR expression in PDAC (AsPC-1), endothelial (HUVECs), and fibroblast (WI-38) cells. BEZ235 inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on proliferation inhibition were observed in the BEZ235-gemcitabine combination in PDAC cells and in combination of BEZ235 or EMAP with gemcitabine in HUVECs and WI-38 cells. BEZ235, alone or in combination with gemcitabine and EMAP, induced apoptosis in AsPC-1, HUVECs, and WI-38 cells as observed by increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 16 days), animal survival increased after BEZ235 and EMAP therapy alone (both 21 days) and gemcitabine monotherapy (28 days). Further increases in survival occurred in combination therapy groups BEZ235 + gemcitabine (30 days, P = 0.007), BEZ235 + EMAP (27 days, P = 0.02), gemcitabine + EMAP (31 days, P = 0.001), and BEZ235 + gemcitabine + EMAP (33 days, P = 0.004). BEZ235 has experimental PDAC antitumor activity in vitro and in vivo that is further enhanced by combination of gemcitabine and EMAP. These findings demonstrate advantages of combination therapy strategies targeting multiple pathways in pancreatic cancer treatment.