Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Immunol ; 20(12): 1610-1620, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740798

RESUMO

The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.


Assuntos
Infecções por Alphavirus/imunologia , Interferons/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Sindbis virus/fisiologia , Infecções por Alphavirus/genética , Retroalimentação Fisiológica , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Replicação Viral
3.
J Immunol ; 195(7): 2963-71, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26386038

RESUMO

Gene expression programs undergo constant regulation to quickly adjust to environmental stimuli that alter the physiological status of the cell, like cellular stress or infection. Gene expression is tightly regulated by multilayered regulatory elements acting in both cis and trans. Posttranscriptional regulation of the 3' untranslated region (UTR) is a powerful regulatory process that determines the rate of protein translation from mRNA. Regulatory elements targeting the 3' UTR include microRNAs, RNA-binding proteins, and long noncoding RNAs, which dramatically alter the immune response. We provide an overview of our current understanding of posttranscriptional regulation of immune gene expression. The focus of this review is on regulatory elements that target the 3' UTR. We delineate how the synergistic or antagonistic interactions of posttranscriptional regulators determine gene expression levels and how dysregulation of 3' UTR-mediated posttranscriptional control associates with human diseases.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Humanos , MicroRNAs/genética , Poliadenilação/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética
4.
PLoS Pathog ; 10(2): e1003962, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586165

RESUMO

Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNß blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNß is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNß. Finally, IFNß prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNß is consistent with the establishment of CMV latency.


Assuntos
Infecções por Citomegalovirus/genética , Citomegalovirus/genética , Regulação Viral da Expressão Gênica/genética , Genoma Viral , Interferon Tipo I/genética , Latência Viral/genética , Animais , Separação Celular , Infecções por Citomegalovirus/imunologia , Modelos Animais de Doenças , Imunofluorescência , Inativação Gênica , Genes Precoces/genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação Viral/genética
5.
Mol Syst Biol ; 8: 584, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22617958

RESUMO

The cellular recognition of viruses evokes the secretion of type-I interferons (IFNs) that induce an antiviral protective state. By live-cell imaging, we show that key steps of virus-induced signal transduction, IFN-ß expression, and induction of IFN-stimulated genes (ISGs) are stochastic events in individual cells. The heterogeneity in IFN production is of cellular-and not viral-origin, and temporal unpredictability of IFN-ß expression is largely due to cell-intrinsic noise generated both upstream and downstream of the activation of nuclear factor-κB and IFN regulatory factor transcription factors. Subsequent ISG induction occurs as a stochastic all-or-nothing switch, where the responding cells are protected against virus replication. Mathematical modelling and experimental validation show that reliable antiviral protection in the face of multi-layered cellular stochasticity is achieved by paracrine response amplification. Achieving coherent responses through intercellular communication is likely to be a more widely used strategy by mammalian cells to cope with pervasive stochasticity in signalling and gene expression.


Assuntos
Interferon Tipo I/fisiologia , Modelos Biológicos , Comunicação Parácrina , Transdução de Sinais , Análise de Célula Única/métodos , Processos Estocásticos , Animais , Linhagem Celular/metabolismo , Linhagem Celular/virologia , Cromossomos Artificiais Bacterianos , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell Rep ; 42(8): 112805, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37467105

RESUMO

Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.


Assuntos
Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , RNA Helicases , Interferons , Imunidade Inata
7.
Pathogens ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558888

RESUMO

Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32341066

RESUMO

Activation and viral control of the innate immune response are hallmarks of hepatitis C virus (HCV) infection and are major determinants of spontaneous clearance or progression to chronic infection and liver disease. In this review, we provide a contemporary overview of how HCV is sensed by the host cell to trigger innate immune activation and the mechanisms deployed by the virus to evade this response. Type I and III interferons (IFNs) are crucial mediators of antiviral innate immunity against HCV, and we specifically highlight the importance of IFN-λ host genetics for the outcome of HCV infection. Last, we focus on the proinflammatory responses elicited by HCV infection and describe our current understanding of how interleukin (IL)-1ß signaling and cross talk between the IL-1ß and IFN signaling pathways lead to sustained inflammation and increased risk of liver pathology.


Assuntos
Antivirais/uso terapêutico , Progressão da Doença , Hepatite C Crônica/tratamento farmacológico , Antivirais/farmacologia , Hepacivirus , Hepatite C Crônica/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Interferons/imunologia , Fígado/virologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Interferon lambda
9.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342578

RESUMO

Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Animais , COVID-19/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Humanos , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/isolamento & purificação
10.
Cells ; 9(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272626

RESUMO

Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/ß. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase-HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection.


Assuntos
Flavivirus/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/virologia , Animais , Linhagem Celular , Humanos , Transdução de Sinais , Transfecção , Zika virus/metabolismo , Infecção por Zika virus/metabolismo
11.
J Exp Med ; 213(12): 2539-2552, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27799623

RESUMO

Interferon (IFN) lambdas are critical antiviral effectors in hepatic and mucosal infections. Although IFNλ1, IFNλ2, and IFNλ3 act antiviral, genetic association studies have shown that expression of the recently discovered IFNL4 is detrimental to hepatitis C virus (HCV) infection through a yet unknown mechanism. Intriguingly, human IFNL4 harbors a genetic variant that introduces a premature stop codon. We performed a molecular and biochemical characterization of IFNλ4 to determine its role and regulation of expression. We found that IFNλ4 exhibits similar antiviral activity to IFNλ3 without negatively affecting antiviral IFN activity or cell survival. We show that humans deploy several mechanisms to limit expression of functional IFNλ4 through noncoding splice variants and nonfunctional protein isoforms. Furthermore, protein-coding IFNL4 mRNA are not loaded onto polyribosomes and lack a strong polyadenylation signal, resulting in poor translation efficiency. This study provides mechanistic evidence that humans suppress IFNλ4 expression, suggesting that immune function is dependent on other IFNL family members.


Assuntos
Interações Hospedeiro-Patógeno , Interleucinas/metabolismo , Viroses/metabolismo , Processamento Alternativo/genética , Animais , Antivirais/farmacologia , Sequência de Bases , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Extracelular/metabolismo , Mutação da Fase de Leitura/genética , Hepacivirus/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferons , Interleucinas/farmacologia , Espaço Intracelular/metabolismo , Modelos Biológicos , Moléculas com Motivos Associados a Patógenos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Interferon , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Nat Med ; 22(12): 1475-1481, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27841874

RESUMO

Hepatitis C virus (HCV) infects 200 million people globally, and 60-80% of cases persist as a chronic infection that will progress to cirrhosis and liver cancer in 2-10% of patients. We recently demonstrated that HCV induces aberrant expression of two host microRNAs (miRNAs), miR-208b and miR-499a-5p, encoded by myosin genes in infected hepatocytes. These miRNAs, along with AU-rich-element-mediated decay, suppress IFNL2 and IFNL3, members of the type III interferon (IFN) gene family, to support viral persistence. In this study, we show that miR-208b and miR-499a-5p also dampen type I IFN signaling in HCV-infected hepatocytes by directly down-regulating expression of the type I IFN receptor chain, IFNAR1. Inhibition of these miRNAs by using miRNA inhibitors during HCV infection increased expression of IFNAR1. Additionally, inhibition rescued the antiviral response to exogenous type I IFN, as measured by a marked increase in IFN-stimulated genes and a decrease in HCV load. Treatment of HCV-infected hepatocytes with type I IFN increased expression of myosins over HCV infection alone. Since these miRNAs can suppress type III IFN family members, these data collectively define a novel cross-regulation between type I and III IFNs during HCV infection.


Assuntos
Regulação da Expressão Gênica/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Interferon Tipo I/imunologia , MicroRNAs/imunologia , Sistemas CRISPR-Cas , Regulação para Baixo , Técnicas de Inativação de Genes , Células Hep G2 , Hepatite C/imunologia , Humanos , Interferons , Interleucinas/imunologia , Miosinas/metabolismo , Receptor de Interferon alfa e beta/genética
13.
Curr Opin Virol ; 12: 75-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890065

RESUMO

Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host's post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority.


Assuntos
Regulação da Expressão Gênica , Hepacivirus/genética , Hepatite C/genética , Processamento Pós-Transcricional do RNA , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Genéticos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
PLoS One ; 8(8): e72700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940817

RESUMO

Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.


Assuntos
Imunidade Inata/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestino Delgado/citologia , Intestino Delgado/imunologia , Cultura Primária de Células/métodos , Animais , Bactérias/imunologia , Bactérias/patogenicidade , Biomarcadores/metabolismo , Linhagem Celular , Polaridade Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos , Interferon Tipo I/metabolismo , Mucosa Intestinal/embriologia , Intestino Delgado/embriologia , Camundongos , Vírus/imunologia , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA