Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Oncol ; 54(9): 1501-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26179632

RESUMO

BACKGROUND: Geometric changes are frequent during the course of treatment of lung cancer patients. This may potentially result in deviations between the planned and actual delivered dose. Electronic portal imaging device (EPID)-based integrated transit planar portal dosimetry (ITPD) is a fast method for absolute in-treatment dose verification. The aim of this study was to investigate if ITPD could detect geometric changes in lung cancer patients. MATERIALS AND METHODS: A total of 460 patients treated with volumetric modulated arc therapy (VMAT) following daily cone beam computed tomography (CT)-based setup were visually inspected for geometrical changes on a daily basis. Forty-six patients were subject to changes and had a re-CT and an adaptive treatment plan. The reasons for adaptation were: change in atelectasis (n = 18), tumor regression (n = 9), change in pleural effusion (n = 8) or other causes (n = 11). The ITPDs were calculated on both the initial planning CT and the re-CT and compared with a global gamma (γ) evaluation (criteria: 3%\3mm). A treatment fraction failed when the percentage of pixels failing in the radiation fields exceeded 10%. Dose-volume histograms (DVHs) were compared between the initial plan versus the plan re-calculated on the re-CT. RESULTS: The ITPD threshold method detected 76% of the changes in atelectasis, while only 50% of the tumor regression cases and 42% of the pleural effusion cases were detected. Only 10% of the cases adapted for other reasons were detected with ITPD. The method has a 17% false-positive rate. No significant correlations were found between changes in DVH metrics and γ fail-rates. CONCLUSIONS: This study showed that most cases with geometric changes caused by atelectasis could be captured by ITPD, however for other causes ITPD is not sensitive enough to detect the clinically relevant changes and no predictive power of ITPD was found.


Assuntos
Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Derrame Pleural Maligno/diagnóstico por imagem , Atelectasia Pulmonar/diagnóstico por imagem , Radioterapia Guiada por Imagem , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/radioterapia
2.
Br J Radiol ; 92(1095): 20180447, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30394804

RESUMO

OBJECTIVE:: To analyse the effect of different image reconstruction techniques on image quality and dual energy CT (DECT) imaging metrics. METHODS:: A software platform for pre-clinical cone beam CT X-ray image reconstruction was built using the open-source reconstruction toolkit. Pre-processed projections were reconstructed with filtered back-projection and iterative algorithms, namely Feldkamp, Davis, and Kress (FDK), Iterative FDK, simultaneous algebraic reconstruction technique (SART), simultaneous iterative reconstruction technique and conjugate gradient. Imaging metrics were quantitatively assessed, using a quality assurance phantom, and DECT analysis was performed to determine the influence of each reconstruction technique on the relative electron density (ρe) and effective atomic number (Zeff) values. RESULTS:: Iterative reconstruction had favourable results for the DECT analysis: a significantly smaller spread for each material in the ρe-Zeff space and lower Zeff and ρe residuals (on average 24 and 25% lower, respectively). In terms of image quality assurance, the techniques FDK, Iterative FDK and SART provided acceptable results. The three reconstruction methods showed similar geometric accuracy, uniformity and CT number results. The technique SART had a contrast-to-noise ratio up to 76% higher for solid water and twice as high for Teflon, but resolution was up to 28% lower when compared to the other two techniques. CONCLUSIONS:: Advanced image reconstruction can be beneficial, but the benefit is small, and calculation times may be unacceptable with current technology. The use of targeted and downscaled reconstruction grids, larger, yet practicable, pixel sizes and GPU are recommended. ADVANCES IN KNOWLEDGE:: An iterative CBCT reconstruction platform was build using RTK.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Imagens de Fantasmas
3.
Phys Imaging Radiat Oncol ; 6: 47-52, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33458388

RESUMO

BACKGROUND AND PURPOSE: Dedicated CT simulation models have the potential to investigate several acquisition, reconstruction, or post-processing parameters without giving any radiation dose to patients. A software program was developed for the simulation and the analysis of single-energy and dual-energy CT images. Simulation and analysis functionalities of the software are described. MATERIALS AND METHODS: In the software, named VOXSI (VOXelized CT SImulator), the X-ray source, user specified simulation geometry, CT setup and the detector energy response can be varied. CT image reconstructions can be performed with an implementation of the ASTRA toolbox. In the DECT post processing toolkit, GUI tools are provided to calculate effective atomic number, relative electron density, pseudo-monoenergetic images, and material map images. Quantitative CT number validation, based on a RMI 467 tissue characterization phantom model, was performed between experimental and simulated CT scans at three different X-ray tube potentials (80, 120, and 140 kVp) with a third generation CT scanner. RESULTS: Overall, a good agreement was found for the mean CT numbers of the RMI 467 inserts. For all energies, the maximum difference in CT numbers between experimental and simulated data was below 17 HU for the soft tissues and below 48 HU for the osseous tissues. CONCLUSION: The software's simulation algorithm showed a good agreement between the CT measurements and CT simulations of the RMI 467 phantom at different energies. The capabilities of the software are demonstrated by an elaborated dual-energy CT research example.

4.
Phys Med Biol ; 63(11): 115008, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29616662

RESUMO

Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for Geant4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in -1.2 ± 1.2 mm (-0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Calibragem , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Dosagem Radioterapêutica
5.
Br J Radiol ; 90(1069): 20160419, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27626324

RESUMO

OBJECTIVE: During precision irradiation of a preclinical lung tumour model, the tumour is subject to breathing motion and it can partially move out of the irradiation field. This work aimed to perform a quantitative analysis of the impact of respiratory motion on a mouse lung tumour irradiation with small fields. METHODS: A four-dimensional digital mouse whole body phantom (MOBY) with a virtual 4-mm spherical lung tumour at different locations in both lungs is used to simulate a breathing anaesthetized mouse in different breathing phases representing a full breathing cycle. The breathing curve is determined by fluoroscopic imaging of an anaesthetized mouse. Each MOBY time frame is loaded in a dedicated treatment planning system (small animal radiotherapy-Plan) and is irradiated by a full arc with a 5-mm circular collimator. Mean and time-dependent organ doses are calculated for the tumour, heart and spinal cord. RESULTS: Depending on the location of the lung tumour, an overestimation of the mean tumour dose up to 11% is found. The mean heart dose could be both overestimated or underestimated because the heart moves in or out of the irradiation field depending on the beam target location. The respiratory motion does not affect the mean spinal cord dose. A dose gradient is visible in the time-dependent tumour dose distribution. CONCLUSION: In the future, new methods need to be developed to track the lung tumour motion before preclinical irradiation to adjust the irradiation plan. Margins, collimator diameter and target dose could be changed easily, but they all have their drawbacks. State-of-the-art clinical techniques such as respiratory gating or motion tracking may offer a solution for the cold spots in the time-dependent tumour dose. Advances in knowledge: A suitable method is found to quantify changes in organ dose due to respiratory motion in mouse lung tumour image-guided precision irradiation.


Assuntos
Imageamento Tridimensional , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Técnicas de Imagem de Sincronização Respiratória/métodos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Neoplasias Pulmonares/diagnóstico , Camundongos , Dosagem Radioterapêutica
6.
Radiat Oncol ; 12(1): 181, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157265

RESUMO

BACKGROUND: To investigate the feasibility of using dual-energy CT (DECT) for tissue segmentation and kilovolt (kV) dose calculations in pre-clinical studies and assess potential dose calculation accuracy gain. METHODS: Two phantoms and an ex-vivo mouse were scanned in a small animal irradiator with two distinct energies. Tissue segmentation was performed with the single-energy CT (SECT) and DECT methods. A number of different material maps was used. Dose calculations were performed to verify the impact of segmentations on the dose accuracy. RESULTS: DECT showed better overall results in comparison to SECT. Higher number of DECT segmentation media resulted in smaller dose differences in comparison to the reference. Increasing the number of materials in the SECT method yielded more instability. Both modalities showed a limit to which adding more materials with similar characteristics ceased providing better segmentation results, and resulted in more noise in the material maps and the dose distributions. The effect was aggravated with a decrease in beam energy. For the ex-vivo specimen, the choice of only one high dense bone for the SECT method resulted in large volumes of tissue receiving high doses. For the DECT method, the choice of more than one kind of bone resulted in lower dose values for the different tissues occupying the same volume. For the organs at risk surrounded by bone, the doses were lower when using the SECT method in comparison to DECT, due to the high absorption of the bone. SECT material segmentation may lead to an underestimation of the dose to OAR in the proximity of bone. CONCLUSIONS: The DECT method enabled the selection of a higher number of materials thereby increasing the accuracy in dose calculations. In phantom studies, SECT performed best with three materials and DECT with seven for the phantom case. For irradiations in preclinical studies with kV photon energies, the use of DECT segmentation combined with the choice of a low-density bone is recommended.


Assuntos
Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Animais , Osso e Ossos/diagnóstico por imagem , Calibragem , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Valores de Referência , Risco
7.
Med Phys ; 44(1): 171-179, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070917

RESUMO

PURPOSE: To assess image quality and to quantify the accuracy of relative electron densities (ρe ) and effective atomic numbers (Zeff ) for three dual-energy computed tomography (DECT) scanners: a novel single-source split-filter (i.e., twin-beam) and two dual-source scanners. METHODS: Measurements were made with a second generation dual-source scanner at 80/140Sn kVp, a third-generation twin-beam single-source scanner at 120 kVp with gold (Au) and tin (Sn) filters, and a third-generation dual-source scanner at 90/150Sn kVp. Three phantoms with tissue inserts were scanned and used for calibration and validation of parameterized methods to extract ρe and Zeff , whereas iodine and calcium inserts were used to quantify Contrast-to-Noise-Ratio (CNR). Spatial resolution in tomographic images was also tested. RESULTS: The third-generation scanners have an image resolution of 6.2, ~0.5 lp/cm higher than the second generation scanner. The twin-beam scanner has low imaging contrast for iodine materials due to its limited spectral separation. The parameterization methods resulted in calibrations with low fit residuals for the dual-source scanners, yielding values of ρe and Zeff close to the reference values (errors within 1.2% for ρe and 6.2% for Zeff for a dose of 20 mGy, excluding lung substitute tissues). The twin-beam scanner presented overall higher errors (within 3.2% for ρe and 28% for Zeff , also excluding lung inserts) and also larger variations for uniform inserts. CONCLUSIONS: Spatial resolution is similar for the three scanners. The twin-beam is able to derive ρe and Zeff , but with inferior accuracy compared to both dual-source scanners.


Assuntos
Tomógrafos Computadorizados , Estudos de Viabilidade , Imagens de Fantasmas , Doses de Radiação , Cimentos de Resina , Razão Sinal-Ruído
8.
Br J Radiol ; 90(1069): 20160480, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27683003

RESUMO

OBJECTIVE: The aim of this work was to investigate whether quantitative dual-energy CT (DECT) imaging is feasible for small animal irradiators with an integrated cone-beam CT (CBCT) system. METHODS: The optimal imaging protocols were determined by analyzing different energy combinations and dose levels. The influence of beam hardening effects and the performance of a beam hardening correction (BHC) were investigated. In addition, two systems from different manufacturers were compared in terms of errors in the extracted effective atomic numbers (Zeff) and relative electron densities (ρe) for phantom inserts with known elemental compositions and relative electron densities. RESULTS: The optimal energy combination was determined to be 50 and 90 kVp. For this combination, Zeff and ρe can be extracted with a mean error of 0.11 and 0.010, respectively, at a dose level of 60 cGy. CONCLUSION: Quantitative DECT imaging is feasible for small animal irradiators with an integrated CBCT system. To obtain the best results, optimizing the imaging protocols is required. Well-separated X-ray spectra and a sufficient dose level should be used to minimize the error and noise for Zeff and ρe. When no BHC is applied in the image reconstruction, the size of the calibration phantom should match the size of the imaged object to limit the influence of beam hardening effects. No significant differences in Zeff and ρe errors are observed between the two systems from different manufacturers. Advances in knowledge: This is the first study that investigates quantitative DECT imaging for small animal irradiators with an integrated CBCT system.


Assuntos
Absorciometria de Fóton , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Animais , Diagnóstico por Imagem/métodos , Estudos de Avaliação como Assunto , Processamento de Imagem Assistida por Computador , Modelos Animais , Sensibilidade e Especificidade
9.
Phys Med Biol ; 62(15): 6044-6061, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28582267

RESUMO

The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.


Assuntos
Simulação por Computador , Neoplasias Pulmonares/patologia , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Raios gama , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Masculino , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
10.
Phys Med Biol ; 61(10): 3969-84, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27156786

RESUMO

The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object's position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.


Assuntos
Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Animais , Bovinos , Raios gama , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA