RESUMO
Background: High total IgE levels are weak predictors of T2High and have been reported in nonallergic asthma. Therefore, the role of total serum IgE (IgE) in the T2High phenotype is still debated. Objective: This study investigated the reliability of stratifying asthmatics into IgEHigh and IgELow within the T2High and T2Low phenotypes. Methods: This cross-sectional single-center study investigated the association of clinical, functional, and bio-humoral parameters in a large asthmatic population stratified by IgE ≥ 100 kU/L, allergen sensitization, B-EOS ≥ 300/µL, and FENO ≥ 30 ppb. Results: Combining T2 biomarkers and IgE identifies (1) T2Low-IgELow (15.5%); (2) T2Low-IgEHigh (5.1%); (3) T2High-IgELow (33.6%); and T2High-IgEHigh (45.7%). T2Low-IgELow patients have more frequent cardiovascular and metabolic comorbidities, a higher prevalence of emphysema, and higher LAMA use than the two T2High subgroups. Higher exacerbation rates, rhinitis, and anxiety/depression syndrome characterize the T2Low-IgEHigh phenotype vs. the T2Low-IgELow phenotype. Within the T2High, low IgE was associated with female sex, obesity, and anxiety/depression. Conclusions: High IgE in T2Low patients is associated with a peculiar clinical phenotype, similar to T2High in terms of disease severity and nasal comorbidities, while retaining the T2Low features. IgE may represent an additional biomarker for clustering asthma in both T2High and T2Low phenotypes rather than a predictor of T2High asthma "per se".
RESUMO
BACKGROUND: in COVID-19 acute respiratory failure, the effects of CPAP and FiO2 on respiratory effort and lung stress are unclear. We hypothesize that, in the compliant lungs of early Sars-CoV-2 pneumonia, the application of positive pressure through Helmet-CPAP may not decrease respiratory effort, and rather worsen lung stress and oxygenation when compared to higher FiO2 delivered via oxygen masks. METHODS: In this single-center (S.Luigi Gonzaga University-Hospital, Turin, Italy), randomized, crossover study, we included patients receiving Helmet-CPAP for early (< 48 h) COVID-19 pneumonia without additional cardiac or respiratory disease. Healthy subjects were included as controls. Participants were equipped with an esophageal catheter, a non-invasive cardiac output monitor, and an arterial catheter. The protocol consisted of a random sequence of non-rebreather mask (NRB), Helmet-CPAP (with variable positive pressure and FiO2) and Venturi mask (FiO2 0.5), each delivered for 20 min. Study outcomes were changes in respiratory effort (esophageal swing), total lung stress (dynamic + static transpulmonary pressure), gas-exchange and hemodynamics. RESULTS: We enrolled 28 COVID-19 patients and 7 healthy controls. In all patients, respiratory effort increased from NRB to Helmet-CPAP (5.0 ± 3.7 vs 8.3 ± 3.9 cmH2O, p < 0.01). However, Helmet's pressure decreased by a comparable amount during inspiration (- 3.1 ± 1.0 cmH2O, p = 0.16), therefore dynamic stress remained stable (p = 0.97). Changes in static and total lung stress from NRB to Helmet-CPAP were overall not significant (p = 0.07 and p = 0.09, respectively), but showed high interpatient variability, ranging from - 4.5 to + 6.1 cmH2O, and from - 5.8 to + 5.7 cmH2O, respectively. All findings were confirmed in healthy subjects, except for an increase in dynamic stress (p < 0.01). PaO2 decreased from NRB to Helmet-CPAP with FiO2 0.5 (107 ± 55 vs 86 ± 30 mmHg, p < 0.01), irrespective of positive pressure levels (p = 0.64). Conversely, with Helmet's FiO2 0.9, PaO2 increased (p < 0.01), but oxygen delivery remained stable (p = 0.48) as cardiac output decreased (p = 0.02). When PaO2 fell below 60 mmHg with VM, respiratory effort increased proportionally (p < 0.01, r = 0.81). CONCLUSIONS: In early COVID-19 pneumonia, Helmet-CPAP increases respiratory effort without altering dynamic stress, while the effects upon static and total stress are variable, requiring individual assessment. Oxygen masks with higher FiO2 provide better oxygenation with lower respiratory effort. Trial registration Retrospectively registered (13-May-2021): clinicaltrials.gov (NCT04885517), https://clinicaltrials.gov/ct2/show/NCT04885517 .