Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345319

RESUMO

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Cromatina/metabolismo , Expressão Gênica , Mesoderma/metabolismo , Somitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
2.
Neurobiol Dis ; 176: 105943, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476979

RESUMO

>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.


Assuntos
Concussão Encefálica , Camundongos , Animais , Concussão Encefálica/diagnóstico por imagem , Cálcio , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Glia ; 70(9): 1720-1733, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567352

RESUMO

Microglia play many critical roles in neural development. Recent single-cell RNA-sequencing studies have found diversity of microglia both across different stages and within the same stage in the developing brain. However, how such diversity is controlled during development is poorly understood. In this study, we first found the expression of the macrophage mannose receptor CD206 in early-stage embryonic microglia on mouse brain sections. This expression showed a sharp decline between E12.5 and E13.5 across the central nervous system. We next tested the roles of the microglia-expressed zinc finger transcription factor SALL1 in this early transition of gene expression. By deleting Sall1 specifically in microglia, we found that many microglia continued to express CD206 when it is normally downregulated. In addition, the mutant microglia continued to show less ramified morphology in comparison with controls even into postnatal stages. Thus, SALL1 is required for early microglia to transition into a more mature status during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Microglia , Neurogênese , Fatores de Transcrição , Dedos de Zinco , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Microglia/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
4.
PLoS Biol ; 16(4): e2005211, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684005

RESUMO

The thalamus, a crucial regulator of cortical functions, is composed of many nuclei arranged in a spatially complex pattern. Thalamic neurogenesis occurs over a short period during mammalian embryonic development. These features have hampered the effort to understand how regionalization, cell divisions, and fate specification are coordinated and produce a wide array of nuclei that exhibit distinct patterns of gene expression and functions. Here, we performed in vivo clonal analysis to track the divisions of individual progenitor cells and spatial allocation of their progeny in the developing mouse thalamus. Quantitative analysis of clone compositions revealed evidence for sequential generation of distinct sets of thalamic nuclei based on the location of the founder progenitor cells. Furthermore, we identified intermediate progenitor cells that produced neurons populating more than one thalamic nuclei, indicating a prolonged specification of nuclear fate. Our study reveals an organizational principle that governs the spatial and temporal progression of cell divisions and fate specification and provides a framework for studying cellular heterogeneity and connectivity in the mammalian thalamus.


Assuntos
Células Clonais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Tálamo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Rastreamento de Células/métodos , Células Clonais/citologia , Embrião de Mamíferos , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Gravidez , Tálamo/citologia , Tálamo/crescimento & desenvolvimento , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
5.
Cureus ; 15(10): e46597, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808602

RESUMO

Herb-induced liver injury (HILI) is a global concern due to the uptrend in Complementary and Alternative Medicine (CAM). The authors add to the current literature by reporting a case of a 61-year-old man with recent travel to Haiti. His past medical history include hepatitis C virus treated in 2021 with a sustained virologic response (SVR). He presented with profound weakness and abnormal liver transaminases in the thousands. It was initially unclear what the etiology of the patient's hepatocellular necrosis was, however, the level of abnormality was most consistent with either toxic metabolic injury or vascular ischemic injury. We initiated N-acetylcysteine and vitamin K and had a positive outcome. Upon further questioning, he admitted to consuming an herbal product cleansing tea called "asowosi" in large quantities. We searched the botanical name of the extract and found the active ingredient was Momordica charantia. The team utilized the updated Roussel Uclaf Causality Assessment Method (RUCAM), and the results demonstrated a highly probable relationship with M. charantia.

6.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868103

RESUMO

GABAergic inhibitory neurons in the prefrontal cortex (PFC) play crucial roles in higher cognitive functions. Despite the link between aberrant development of PFC interneurons and a number of psychiatric disorders, mechanisms underlying the development of these neurons are poorly understood. Here we show that the retinoic acid (RA)-degrading enzyme CYP26B1 (cytochrome P450 family 26, subfamily B, member 1) is transiently expressed in the mouse frontal cortex during postnatal development, and that medial ganglionic eminence (MGE)-derived interneurons, particularly in parvalbumin (PV)-expressing neurons, are the main cell type that has active RA signaling during this period. We found that frontal cortex-specific Cyp26b1 knock-out mice had an increased density of PV-expressing, but not somatostatin-expressing, interneurons in medial PFC, indicating a novel role of RA signaling in controlling PV neuron development. The initiation of Cyp26b1 expression in neonatal PFC coincides with the establishment of connections between the thalamus and the PFC. We found that these connections are required for the postnatal expression of Cyp26b1 in medial PFC. In addition to this region-specific role in postnatal PFC that regulates RA signaling and PV neuron development, the thalamocortical connectivity had an earlier role in controlling radial dispersion of MGE-derived interneurons throughout embryonic neocortex. In summary, our results suggest that the thalamus plays multiple, temporally separate roles in interneuron development in the PFC.


Assuntos
Interneurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tálamo/metabolismo , Tretinoína/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Tálamo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA