Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1346607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500488

RESUMO

Introduction: Brain-computer interfaces (BCIs) based on functional electrical stimulation have been used for upper extremity motor rehabilitation after stroke. However, little is known about their efficacy for multiple BCI treatments. In this study, 19 stroke patients participated in 25 upper extremity followed by 25 lower extremity BCI training sessions. Methods: Patients' functional state was assessed using two sets of clinical scales for the two BCI treatments. The Upper Extremity Fugl-Meyer Assessment (FMA-UE) and the 10-Meter Walk Test (10MWT) were the primary outcome measures for the upper and lower extremity BCI treatments, respectively. Results: Patients' motor function as assessed by the FMA-UE improved by an average of 4.2 points (p < 0.001) following upper extremity BCI treatment. In addition, improvements in activities of daily living and clinically relevant improvements in hand and finger spasticity were observed. Patients showed further improvements after the lower extremity BCI treatment, with walking speed as measured by the 10MWT increasing by 0.15 m/s (p = 0.001), reflecting a substantial meaningful change. Furthermore, a clinically relevant improvement in ankle spasticity and balance and mobility were observed. Discussion: The results of the current study provide evidence that both upper and lower extremity BCI treatments, as well as their combination, are effective in facilitating functional improvements after stroke. In addition, and most importantly improvements did not stop after the first 25 upper extremity BCI sessions.

2.
J Neural Eng ; 21(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237182

RESUMO

Objective.Recent trends in brain-computer interface (BCI) research concern the passive monitoring of brain activity, which aim to monitor a wide variety of cognitive states. Engagement is such a cognitive state, which is of interest in contexts such as learning, entertainment or rehabilitation. This study proposes a novel approach for real-time estimation of engagement during different tasks using electroencephalography (EEG).Approach.Twenty-three healthy subjects participated in the BCI experiment. A modified version of the d2 test was used to elicit engagement. Within-subject classification models which discriminate between engaging and resting states were trained based on EEG recorded during a d2 test based paradigm. The EEG was recorded using eight electrodes and the classification model was based on filter-bank common spatial patterns and a linear discriminant analysis. The classification models were evaluated in cross-task applications, namely when playing Tetris at different speeds (i.e. slow, medium, fast) and when watching two videos (i.e. advertisement and landscape video). Additionally, subjects' perceived engagement was quantified using a questionnaire.Main results.The models achieved a classification accuracy of 90% on average when tested on an independent d2 test paradigm recording. Subjects' perceived and estimated engagement were found to be greater during the advertisement compared to the landscape video (p= 0.025 andp<0.001, respectively); greater during medium and fast compared to slow Tetris speed (p<0.001, respectively); not different between medium and fast Tetris speeds. Additionally, a common linear relationship was observed for perceived and estimated engagement (rrm= 0.44,p<0.001). Finally, theta and alpha band powers were investigated, which respectively increased and decreased during more engaging states.Significance.This study proposes a task-specific EEG engagement estimation model with cross-task capabilities, offering a framework for real-world applications.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Eletrodos , Processamento de Sinais Assistido por Computador
3.
Front Neurosci ; 17: 1256077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920297

RESUMO

The use of Brain-Computer Interfaces (BCI) as rehabilitation tools for chronically ill neurological patients has become more widespread. BCIs combined with other techniques allow the user to restore neurological function by inducing neuroplasticity through real-time detection of motor-imagery (MI) as patients perform therapy tasks. Twenty-five stroke patients with gait disability were recruited for this study. Participants performed 25 sessions with the MI-BCI and assessment visits to track functional changes during the therapy. The results of this study demonstrated a clinically significant increase in walking speed of 0.19 m/s, 95%CI [0.13-0.25], p < 0.001. Patients also reduced spasticity and improved their range of motion and muscle contraction. The BCI treatment was effective in promoting long-lasting functional improvements in the gait speed of chronic stroke survivors. Patients have more movements in the lower limb; therefore, they can walk better and safer. This functional improvement can be explained by improved neuroplasticity in the central nervous system.

5.
Front Neurosci ; 14: 882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973435

RESUMO

OBJECTIVE: To evaluate whether introducing gamification in BCI rehabilitation of the upper limbs of post-stroke patients has a positive impact on their experience without altering their efficacy in creating motor mental images (MI). DESIGN: A game was designed purposely adapted to the pace and goals of an established BCI-rehabilitation protocol. Rehabilitation was based on a double feedback: functional electrostimulation and animation of a virtual avatar of the patient's limbs. The game introduced a narrative on top of this visual feedback with an external goal to achieve (protecting bits of cheese from a rat character). A pilot study was performed with 10 patients and a control group of six volunteers. Two rehabilitation sessions were done, each made up of one stage of calibration and two training stages, some stages with the game and others without. The accuracy of the classification computed was taken as a measure to compare the efficacy of MI. Users' opinions were gathered through a questionnaire. No potentially identifiable human images or data are presented in this study. RESULTS: The gamified rehabilitation presented in the pilot study does not impact on the efficacy of MI, but it improves users experience making it more fun. CONCLUSION: These preliminary results are encouraging to continue investigating how game narratives can be introduced in BCI rehabilitation to make it more gratifying and engaging.

6.
Front Neurosci ; 14: 591435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192277

RESUMO

INTRODUCTION: Numerous recent publications have explored Brain Computer Interfaces (BCI) systems as rehabilitation tools to help subacute and chronic stroke patients recover upper extremity movement. Recent work has shown that BCI therapy can lead to better outcomes than conventional therapy. BCI combined with other techniques such as Functional Electrical Stimulation (FES) and Virtual Reality (VR) allows to the user restore the neurological function by inducing the neural plasticity through improved real-time detection of motor imagery (MI) as patients perform therapy tasks. METHODS: Fifty-one stroke patients with upper extremity hemiparesis were recruited for this study. All participants performed 25 sessions with the MI BCI and assessment visits to track the functional changes before and after the therapy. RESULTS: The results of this study demonstrated a significant increase in the motor function of the paretic arm assessed by Fugl-Meyer Assessment (FMA-UE), ΔFMA-UE = 4.68 points, P < 0.001, reduction of the spasticity in the wrist and fingers assessed by Modified Ashworth Scale (MAS), ΔMAS-wrist = -0.72 points (SD = 0.83), P < 0.001, ΔMAS-fingers = -0.63 points (SD = 0.82), P < 0.001. Other significant improvements in the grasp ability were detected in the healthy hand. All these functional improvements achieved during the BCI therapy persisted 6 months after the therapy ended. Results also showed that patients with Motor Imagery accuracy (MI) above 80% increase 3.16 points more in the FMA than patients below this threshold (95% CI; [1.47-6.62], P = 0.003). The functional improvement was not related with the stroke severity or with the stroke stage. CONCLUSION: The BCI treatment used here was effective in promoting long lasting functional improvements in the upper extremity in stroke survivors with severe, moderate and mild impairment. This functional improvement can be explained by improved neuroplasticity in the central nervous system.

7.
Front Neurosci ; 14: 582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733182

RESUMO

INTRODUCTION: Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment. METHODS: Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study. The stroke patients where subdivided in three groups according to the stroke location: Cortical, Subcortical, and Cortical + Subcortical. The participants performed assessment visits to record the EEG in the resting state and perform functional tests using rehabilitation scales. Then, stroke patients performed 25 sessions using a motor-imagery based Brain Computer Interface system (BCI). BSI was calculated with the EEG data in resting state and LC was calculated with the Event-Related Synchronization maps. RESULTS: The results of this study demonstrated significant differences in the BSI between the healthy group and Subcortical group (P = 0.001), and also between the healthy and Cortical+Subcortical group (P = 0.019). No significant differences were found between the healthy group and the Cortical group (P = 0.505). Furthermore, the BSI analysis in the healthy group based on gender showed statistical differences (P = 0.027). In the stroke group, the correlation between the BSI and the functional state of the upper extremity assessed by Fugl-Meyer Assessment (FMA) was also significant, ρ = -0.430 and P = 0.046. The correlation between the BSI and the FMA-Lower extremity was not significant (ρ = -0.063, P = 0.852). Similarly, the LC calculated in the alpha band has significative correlation with FMA of upper extremity (ρ = -0.623 and P < 0.001) and FMA of lower extremity (ρ = -0.509 and P = 0.026). Other important significant correlations between LC and functional scales were observed. In addition, the patients showed an improvement in the FMA-upper extremity after the BCI therapy (ΔFMA = 1 median [IQR: 0-8], P = 0.002). CONCLUSION: The quantitative EEG tools used here may help support our understanding of stroke and how the brain changes during rehabilitation therapy. These tools can help identify changes in EEG biomarkers and parameters during therapy that might lead to improved therapy methods and functional prognoses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA