RESUMO
Efficient synthetic approaches for the incorporation of nitrogen into polyaromatic compounds (PACs) in different patterns as stabilising moiety for π-extended systems and modification tool for optoelectronic properties remain a challenge until today. Herein, we developed a new versatile pathway to napthyridine-based PACs as non-symmetric and regioisomeric pendant to pyrazine-based PACs. A combination of a gold-catalysed synthesis of 2-aminoquinolines and the development of an in situ desulfonation and condensation of these precursors are the key steps of the protocol. The shape and type of attached functional groups of the PACs can be designed in a late stage of the overall synthetic procedure by the chosen anthranile and backbone of the ynamide introduced in the gold-catalysed step. Single-crystal X-ray diffraction and the investigation of electronic properties of the compounds show the influence of the attached substituents. All naphthyridine-based PACs show halochromic behaviour implying their use as highly sensitive proton sensor in non-protic solvents.
RESUMO
Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures they reveal clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method.
RESUMO
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
RESUMO
Near-infrared electroluminescence from carbon-based emitters, especially in the second biological window (NIR-II) or at telecommunication wavelengths, is difficult to achieve. Single-walled carbon nanotubes (SWCNTs) have been proposed as a possible solution due to their tunable and narrowband emission in the near-infrared region and high charge carrier mobilities. Furthermore, the covalent functionalization of SWCNTs with a controlled number of luminescent sp3 defects leads to even more red-shifted photoluminescence with enhanced quantum yields. Here, we demonstrate that by tailoring the binding configuration of the introduced sp3 defects and hence tuning their optical trap depth, we can generate emission from polymer-sorted (6,5) and (7,5) nanotubes that is mainly located in the telecommunication O-band (1260-1360 nm). Networks of these functionalized nanotubes are integrated in ambipolar, light-emitting field-effect transistors to yield the corresponding narrowband near-infrared electroluminescence. Further investigation of the current- and carrier density-dependent electro- and photoluminescence spectra enables insights into the impact of different sp3 defects on charge transport in networks of functionalized SWCNTs.
RESUMO
The covalent functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent quantum defects enables their application as near-infrared single-photon sources, as optical sensors, and for in vivo tissue imaging. Tuning the emission wavelength and defect density is crucial for these applications. While the former can be controlled by different synthetic protocols and is easily measured, defect densities are still determined as relative rather than absolute values, limiting the comparability between different nanotube batches and chiralities. Here, we present an absolute and unified quantification metric for the defect density in SWCNT samples based on Raman spectroscopy. It is applicable to a range of small-diameter semiconducting nanotubes and for arbitrary laser wavelengths. We observe a clear inverse correlation of the D/G+ ratio increase with nanotube diameter, indicating that curvature effects contribute significantly to the defect activation of Raman modes. Correlation of intermediate frequency modes with defect densities further corroborates their activation by defects and provides additional quantitative metrics for the characterization of functionalized SWCNTs.
RESUMO
The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.