Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632021

RESUMO

Opa1 participates in inner mitochondrial membrane fusion and cristae morphogenesis. Here, we show that muscle-specific Opa1 ablation causes reduced muscle fiber size, dysfunctional mitochondria, enhanced Fgf21, and muscle inflammation characterized by NF-κB activation, and enhanced expression of pro-inflammatory genes. Chronic sodium salicylate treatment ameliorated muscle alterations and reduced the muscle expression of Fgf21. Muscle inflammation was an early event during the progression of the disease and occurred before macrophage infiltration, indicating that it is a primary response to Opa1 deficiency. Moreover, Opa1 repression in muscle cells also resulted in NF-κB activation and inflammation in the absence of necrosis and/or apoptosis, thereby revealing that the activation is a cell-autonomous process and independent of cell death. The effects of Opa1 deficiency on the expression NF-κB target genes and inflammation were absent upon mitochondrial DNA depletion. Under Opa1 deficiency, blockage or repression of TLR9 prevented NF-κB activation and inflammation. Taken together, our results reveal that Opa1 deficiency in muscle causes initial mitochondrial alterations that lead to TLR9 activation, and inflammation, which contributes to enhanced Fgf21 expression and to growth impairment.


Assuntos
DNA Mitocondrial/genética , GTP Fosfo-Hidrolases/fisiologia , Inflamação/etiologia , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Knockout , Músculo Esquelético/imunologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Necrose , Regeneração , Receptor Toll-Like 9/genética
2.
Nat Commun ; 14(1): 108, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609505

RESUMO

Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.


Assuntos
DNA Mitocondrial , Miosite , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Receptor Toll-Like 9/metabolismo , Dinâmica Mitocondrial/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Inflamação/patologia
3.
J Biol Chem ; 281(26): 17920-8, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16627477

RESUMO

The metzincin clan encompasses several families of zinc-dependent metalloproteases with proven function both in physiology and pathology. They act either as broad spectrum protein degraders or as sheddases, operating through limited proteolysis. Among the structurally uncharacterized metzincin families are the pappalysins, of which the most thoroughly studied member is human pregnancy-associated plasma protein A (PAPP-A), a heavily glycosylated 170-kDa multidomain protein specifically cleaving insulin-like growth factor (IGF)-binding proteins (IGFBPs). Proulilysin is a 38-kDa archaeal protein that shares sequence similarity with PAPP-A but encompasses only the pro-domain and the catalytic domain. It undergoes calcium-mediated autolytic activation, and the mature protein adopts a three-dimensional structure with two subdomains separated by an active site cleft containing the catalytic zinc ion. This structure is reminiscent of human members of the adamalysin/ADAMs (a disintegrin and a metalloprotease) family of metzincins. A bound dipeptide yields information on the substrate specificity of ulilysin, which specifically hydrolyzes IGFBP-2 to -6, insulin, and extracellular matrix proteins but not IGFBP-1 or IGF-II. Accordingly, ulilysin has higher proteolytic efficiency and a broader substrate specificity than human PAPP-A. The structure of ulilysin represents a prototype for the catalytic domain of pappalysins.


Assuntos
Metaloproteases/genética , Methanosarcina/enzimologia , Methanosarcina/genética , Família Multigênica/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Cristalografia , Humanos , Metaloproteases/química , Metaloproteases/metabolismo , Dados de Sequência Molecular , Proteína Plasmática A Associada à Gravidez/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA