Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Vet Res ; 16(1): 43, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019556

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFCs) may be useful therapeutically in conditions with poor blood supply, such as distal limb wounds in the horse. Encapsulation of ECFCs into injectable hydrogel microspheres may ensure cell survival and cell localization to improve neovascularization and healing. Autologous ECFCs were isolated from 6 horses, labeled with quantum nanodots (QD), and a subset were encapsulated in poly(ethylene) glycol fibrinogen microspheres (PEG-Fb MS). Full-thickness dermal wounds were created on each distal limb and injected with empty PEG-Fb MS, serum, ECFCs, or ECFCs encapsulated into PEG- Fb MS (ECFC/MS). Analysis included wound surface area (WSA), granulation tissue scoring (GS), thermography, collagen density staining, and immunohistochemical staining for endothelial and inflammatory cells. The purpose of this study was to track cell location and evaluate wound vascularization and inflammatory response after injection of ECFC/MS or naked ECFCs in equine distal limb wounds. RESULTS: ECFCs were found near and within newly formed blood vessels up to 3 weeks after injection. ECFC and ECFC/MS groups had the greatest blood vessel quantity at week 1 in the wound periphery. Wounds treated with ECFCs and ECFC/MS had the lowest density of neutrophils and macrophages at week 4. There were no significant effects of ECFC or ECFC/MS treatment on other measured parameters. CONCLUSIONS: Injection of microsphere encapsulated ECFCs was practical for clinical use and well-tolerated. The positive ECFC treatment effects on blood vessel density and wound inflammation warrant further investigation.


Assuntos
Transplante de Células/veterinária , Células Endoteliais/citologia , Microesferas , Neovascularização Fisiológica , Cicatrização , Animais , Movimento Celular , Proliferação de Células , Transplante de Células/métodos , Cavalos , Hidrogéis/química , Metacarpo/lesões , Metatarso/lesões , Pontos Quânticos , Tela Subcutânea
2.
Small ; 15(47): e1902058, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31468632

RESUMO

This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)-diacrylate, poly(ethylene glycol)-fibrinogen, and gelatin methacrylate. Cell-laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale-up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time-consuming and costly. Using a new molding technique, the microfluidic device employs a modified T-junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10-60 million cells mL-1 ) and a wide range of diameters (300-1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long-term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor-based cell expansion and differentiation, and high throughput tissue sphere-based drug testing assays.


Assuntos
Células Imobilizadas/citologia , Microfluídica/métodos , Microesferas , Animais , Contagem de Células , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Reagentes de Ligações Cruzadas/química , Cavalos , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Luz , Células MCF-7 , Microfluídica/instrumentação , Fenótipo , Polímeros/química
3.
BMC Vet Res ; 14(1): 247, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139355

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) contribute to neovascularization and vascular repair in vivo and are attractive for clinical use in ischemic disease. Tracking of stem and progenitor cells is essential to determine engraftment after administration. Semiconductor quantum dots (QD) are promising for cell labeling due to their ease of uptake by many cell lines and their continued presence after many cell generations. The purpose of this study was to evaluate function and growth of equine EPCs after QD labeling. Additionally, this study evaluated the duration of QD label retention and mechanisms of QD label loss. RESULTS: Endothelial colony forming cells (ECFCs) from adult horses (N = 3) were employed for this study, with QD labeled and unlabeled ECFCs tested from each horse. Cell proliferation of ECFCs labeled with QD at 20 nM was quantified by comparing the number of cell doublings per day (NCD) and the population doubling time (PDT) in labeled and unlabeled cells. Function of labeled and unlabeled ECFCs was assessed by comparing uptake of acetylated low-density lipoprotein (DiO-Ac-LDL) and tubule formation on growth factor containing matrix. Cell proliferation was not impacted by QD labeling; both NCD (p = 0. 95) and PDT (P = 0. 91) did not differ between unlabeled and QD labeled cells. Function of ECFCs assessed by DiO-Ac-LDL and tubule formation was also not different between unlabeled and QD labeled cells (P = 0. 33 and P = 0. 52, respectively). ECFCs retained their QD labeling over 7 passages with both 5 nM and 20 nM label concentrations. Reduction in label intensity was observed over time, and the mechanism was determined to be cell division. CONCLUSIONS: Equine ECFCs are effectively labeled with QD, and QD concentrations up to 20 nM do not affect cell growth or function. QD label loss is a result of cell division. The use of QD labeling with equine EPCs may be an ideal way to track engraftment of EPCs for in vivo applications.


Assuntos
Células Endoteliais/citologia , Pontos Quânticos , Coloração e Rotulagem/métodos , Animais , Proliferação de Células , Células Cultivadas , Cavalos , Semicondutores , Células-Tronco/citologia
4.
ACS Biomater Sci Eng ; 8(9): 3831-3841, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35969206

RESUMO

Spheroidal cancer microtissues are highly advantageous for a wide range of biomedical applications, including high-throughput drug screening, multiplexed target validation, mechanistic investigation of tumor-extracellular matrix (ECM) interactions, among others. Current techniques for spheroidal tissue formation rely heavily on self-aggregation of single cancer cells and have substantial limitations in terms of cell-type-specific heterogeneities, uniformity, ease of production and handling, and most importantly, mimicking the complex native tumor microenvironmental conditions in simplistic models. These constraints can be overcome by using engineered tunable hydrogels that closely mimic the tumor ECM and elucidate pathologically relevant cell behavior, coupled with microfluidics-based high-throughput fabrication technologies to encapsulate cells and create cancer microtissues. In this study, we employ biosynthetic hybrid hydrogels composed of poly(ethylene glycol diacrylate) (PEGDA) covalently conjugated to natural protein (fibrinogen) (PEG-fibrinogen, PF) to create monodisperse microspheres encapsulating breast cancer cells for 3D culture and tumorigenic characterization. A previously developed droplet-based microfluidic system is used for rapid, facile, and reproducible fabrication of uniform cancer microspheres with either MCF7 or MDA-MB-231 (metastatic) breast cancer cells. Cancer cell-type-dependent variations in cell viability, metabolic activity, and 3D morphology, as well as microsphere stiffness, are quantified over time. Particularly, MCF7 cells grew as tight cellular clusters in the PF microspheres, characteristic of their epithelial morphology, while MDA-MB-231 cells displayed elongated and invasive morphology, characteristic of their mesenchymal and metastatic nature. Finally, the translational potential of the cancer microsphere platform toward high-throughput drug screening is also demonstrated. With high uniformity, scalability, and control over engineered microenvironments, the established cancer microsphere model can be potentially used for mechanistic studies, fabrication of modular cancer microtissues, and future drug-testing applications.


Assuntos
Neoplasias da Mama , Microfluídica , Neoplasias da Mama/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Feminino , Fibrinogênio , Humanos , Hidrogéis , Microesferas , Polietilenoglicóis , Microambiente Tumoral
5.
Acta Biomater ; 152: 74-85, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36031035

RESUMO

The aim of this study was to investigate the ability of peptides and peptide combinations to support circulating endothelial colony forming cell (ECFC) rolling and adhesion under shear flow, informing biomaterial design in moving toward rapid cardiovascular device endothelialization. ECFCs have high proliferative capability and can differentiate into endothelial cells, making them a promising cell source for endothelialization. Both single peptides and peptide combinations designed to target integrins α4ß1 and α5ß1 were coupled to poly(ethylene glycol) hydrogels, and their performance was evaluated by monitoring velocity patterns during the ECFC rolling process, in addition to firm adhesion (capture). Tether percentage and velocity fluctuation, a parameter newly defined here, were found to be valuable in assessing cell rolling velocity patterns and when used in combination were able to predict cell capture. REDV-containing peptides binding integrin α4ß1 have been previously shown to reduce ECFC rolling velocity but not to support firm adhesion. This study finds that the performance of REDV-containing peptides in facilitating ECFC dynamic adhesion and capture can be improved by combination with α5ß1 integrin-binding peptides, which support ECFC static adhesion. Moreover, when similar in length, the peptide combinations may have synergistic effects in capturing ECFCs. With matching lengths, the peptide combinations including CRRETAWAC(cyclic)+REDV, P_RGDS+KSSP_REDV, and P_RGDS+P_REDV showed high values in both tether percentage and velocity fluctuation and improvement in ECFC capture compared to the single peptides at the shear rate of 20 s-1. These newly identified peptide combinations have the potential to be used as vascular device coatings to recruit ECFCs. STATEMENT OF SIGNIFICANCE: Restoration of functional endothelium following placement of stents and vascular grafts is critical for maintaining long-term patency. Endothelial colony forming cells (ECFCs) circulating in blood flow are a valuable cell source for rapid endothelialization. Here we identify and test novel peptides and peptide combinations that can potentially be used as coatings for vascular devices to support rolling and capture of ECFCs from flow. In addition to the widely used assessment of final ECFC adhesion, we also recorded the rolling process to quantitatively evaluate the interaction between ECFCs and the peptides, obtaining detailed performance of the peptides and gaining insight into effective capture molecule design. Peptide combinations targeting both integrin α4ß1 and integrin α5ß1 showed the highest percentages of ECFC capture.


Assuntos
Células Endoteliais , Hidrogéis , Materiais Biocompatíveis , Adesão Celular/fisiologia , Células Cultivadas , Hidrogéis/farmacologia , Integrina alfa4beta1 , Peptídeos/farmacologia , Polietilenoglicóis/farmacologia
6.
Biomaterials ; 274: 120818, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023620

RESUMO

Engineered cardiac tissues that can be directly produced from human induced pluripotent stem cells (hiPSCs) in scalable, suspension culture systems are needed to meet the demands of cardiac regenerative medicine. Here, we demonstrate successful production of functional cardiac tissue microspheres through direct differentiation of hydrogel encapsulated hiPSCs. To form the microspheres, hiPSCs were suspended within the photocrosslinkable biomaterial, PEG-fibrinogen (25 million cells/mL), and encapsulated at a rate of 420,000 cells/minute using a custom microfluidic system. Even at this high cell density and rapid production rate, high intra-batch and batch-to-batch reproducibility was achieved. Following microsphere formation, hiPSCs maintained high cell viability and continued to grow within and beyond the original PEG-fibrinogen matrix. These initially soft microspheres (<250 Pa) supported efficient cardiac differentiation; spontaneous contractions initiated by differentiation day 8, and the microspheres contained >75% cardiomyocytes (CMs). CMs responded appropriately to pharmacological stimuli and exhibited 1:1 capture up to 6.0 Hz when electrically paced. Over time, cells formed cell-cell junctions and aligned myofibril fibers; engineered cardiac microspheres were maintained in culture over 3 years. The capability to rapidly generate uniform cardiac microsphere tissues is critical for advancing downstream applications including biomanufacturing, multi-well plate drug screening, and injection-based regenerative therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Hidrogéis , Microesferas , Miócitos Cardíacos , Reprodutibilidade dos Testes , Engenharia Tecidual
7.
Sci Rep ; 8(1): 3171, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453454

RESUMO

Assessment of anti-cancer drug efficacy in in vitro three-dimensional (3D) bioengineered cancer models provides important contextual and relevant information towards pre-clinical translation of potential drug candidates. However, currently established models fail to sufficiently recapitulate complex tumor heterogeneity. Here we present a chip-based tumor-mimetic platform incorporating a 3D in vitro breast cancer model with a tumor-mimetic microvascular network, replicating the pathophysiological architecture of native vascularized breast tumors. The microfluidic platform facilitated formation of mature, lumenized and flow-aligned endothelium under physiological flow recapitulating both high and low perfused tumor regions. Metastatic and non-metastatic breast cancer cells were maintained in long-term 3D co-culture with stromal fibroblasts in a poly(ethylene glycol)-fibrinogen hydrogel matrix within adjoining tissue chambers. The interstitial space between the chambers and endothelium contained pores to mimic the "leaky" vasculature found in vivo and facilitate cancer cell-endothelial cell communication. Microvascular pattern-dependent flow variations induced concentration gradients within the 3D tumor mass, leading to morphological tumor heterogeneity. Anti-cancer drugs displayed cell type- and flow pattern-dependent effects on cancer cell viability, viable tumor area and associated endothelial cytotoxicity. Overall, the developed microfluidic tumor-mimetic platform facilitates investigation of cancer-stromal-endothelial interactions and highlights the role of a fluidic, tumor-mimetic vascular network on anti-cancer drug delivery and efficacy for improved translation towards pre-clinical studies.


Assuntos
Antineoplásicos/farmacologia , Biomimética/instrumentação , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Microvasos/efeitos dos fármacos , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Células MCF-7 , Microvasos/fisiologia , Microambiente Tumoral/efeitos dos fármacos
8.
J Biomed Mater Res A ; 105(1): 236-252, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615742

RESUMO

Tissue-engineered three-dimensional (3D) cancer models employing biomimetic hydrogels as cellular scaffolds provide contextual in vitro recapitulation of the native tumor microenvironment, thereby improving their relevance for use in cancer research. This study reports the use of poly(ethylene glycol)-fibrinogen (PF) as a suitable biosynthetic hydrogel for the 3D culture of three breast cancer cell lines: MCF7, SK-BR-3, and MDA-MB-231. Modification of the matrix characteristics of PF hydrogels was achieved by addition of excess poly(ethylene glycol) diacrylate, which resulted in differences in Young's moduli, degradation behavior, release kinetics, and ultrastructural variations in scaffold microarchitecture. Cancer cells were maintained in 3D culture with high viability within these hydrogels and resulted in cell-type dependent morphological changes over time. Cell proliferation and 3D morphology within the hydrogels were visualized through immunofluorescence staining. Finally, spatial heterogeneity of colony area within the hydrogels was quantified, with peripheral cells forming colonies of higher area compared to those in the interior regions. Overall, PF-based hydrogels facilitate 3D culture of breast cancer cells and investigation of cellular behavior in response to varying matrix characteristics. PF-based cancer models could be potentially used in future investigations of cancer biology and in anti-cancer drug-testing applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 236-252, 2017.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibrinogênio , Hidrogéis , Modelos Biológicos , Polietilenoglicóis , Neoplasias da Mama/patologia , Feminino , Fibrinogênio/química , Fibrinogênio/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7 , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
9.
Tissue Eng Part C Methods ; 23(11): 815-825, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28762895

RESUMO

A common challenge in cell therapy is the inability to routinely maintain survival and localization of injected therapeutic cells. Delivering cells by direct injection increases the flexibility of clinical applications, but may cause low cell viability and retention rates due to the high shear forces in the needle and mechanical wash out. In this study, we encapsulated endothelial colony forming cells (ECFCs) in poly(ethylene glycol)-fibrinogen (PF) hydrogel microspheres using a custom-built microfluidic device; this system supports rapid encapsulation of high cell concentrations (10 million cells per mL) and resulting cell-laden microspheres are highly uniform in shape and size. The encapsulated ECFCs were shown to have >95% viability and continued to rapidly proliferate. Expression of cell markers (von Willebrand factor, CD105, and CD14), the ability to form tubules on basement membrane matrix, and the ability to take up low-density lipoprotein were similar between pre- and post-encapsulated cells. Viability of encapsulated ECFCs was maintained after shear through 18-23-gauge needles. Ex vivo and in vivo cell delivery studies were performed by encapsulating and injecting autologous equine ECFCs subcutaneously into distal limb full-thickness wounds of adult horses. Injected ECFCs were visualized by labeling with fluorescent nanodots before encapsulation. One week after injection, confocal microscopy analysis of biopsies of the leading edges of the wounds showed that the encapsulated ECFCs migrated into the surrounding host tissue indicating successful retention and survival of the delivered ECFCs. Rapid, scalable cell encapsulation into PF microspheres was demonstrated to be practical for use in large animal cell therapy and is a clinically relevant method to maintain cell retention and survival after local injection.


Assuntos
Técnicas de Cultura de Células/métodos , Transplante de Células/métodos , Ensaio de Unidades Formadoras de Colônias/métodos , Células Endoteliais/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Injeções , Microesferas , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Módulo de Elasticidade , Fibrinogênio/farmacologia , Cavalos , Fenótipo , Polietilenoglicóis/química , Tela Subcutânea/efeitos dos fármacos
10.
ACS Biomater Sci Eng ; 3(8): 1499-1509, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429637

RESUMO

Direct stem cell encapsulation and cardiac differentiation within supporting biomaterial scaffolds are critical for reproducible and scalable production of the functional human tissues needed in regenerative medicine and drug-testing applications. Producing cardiac tissues directly from pluripotent stem cells rather than assembling tissues using pre-differentiated cells can eliminate multiple cell-handling steps that otherwise limit the potential for process automation and production scale-up. Here we asked whether our process for forming 3D developing human engineered cardiac tissues using poly(ethylene glycol)-fibrinogen hydrogels can be extended to widely used and printable gelatin methacryloyl (GelMA) hydrogels. We demonstrate that low-density GelMA hydrogels can be formed rapidly using visible light (<1 min) and successfully employed to encapsulate human induced pluripotent stem cells while maintaining high cell viability. Resulting constructs had an initial stiffness of approximately 220 Pa, supported tissue growth and dynamic remodeling, and facilitated high-efficiency cardiac differentiation (>70%) to produce spontaneously contracting GelMA human engineered cardiac tissues (GEhECTs). GEhECTs initiated spontaneous contractions on day 8 of differentiation, with synchronicity, frequency, and velocity of contraction increasing over time, and displayed developmentally appropriate temporal changes in cardiac gene expression. GEhECT-dissociated cardiomyocytes displayed well-defined and aligned sarcomeres spaced at 1.85 ± 0.1 µm and responded appropriately to drug treatments, including the ß-adrenergic agonist isoproterenol and antagonist propranolol, as well as to outside pacing up to 3.0 Hz. Overall results demonstrate that GelMA is a suitable biomaterial for the production of developing cardiac tissues and has the potential to be employed in scale-up production and bioprinting of GEhECTs.

11.
Am J Vet Res ; 77(10): 1157-65, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27668588

RESUMO

OBJECTIVE To evaluate optimal isolation of endothelial colony-forming cells (ECFCs) from peripheral blood of horses. SAMPLE Jugular and cephalic venous blood samples from 17 adult horses. PROCEDURES Each blood sample was divided; isolation was performed with whole blood adherence (WBA) and density gradient centrifugation (DGC). Isolated cells were characterized by uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-Ac-LDL), vascular tubule formation, and expression of endothelial (CD34, CD105, vascular endothelial growth factor receptor-2, and von Willebrand factor) and hematopoietic (CD14) cell markers by use of indirect immunofluorescence assay (IFA) and flow cytometry. RESULTS Colonies with cobblestone morphology were isolated from 15 of 17 horses. Blood collected from the cephalic vein yielded colonies significantly more often (14/17 horses) than did blood collected from the jugular vein (8/17 horses). Of 14 cephalic blood samples with colonies, 13 were obtained with DGC and 8 with WBA. Of 8 jugular blood samples with colonies, 8 were obtained with DGC and 4 with WBA. Colony frequency (colonies per milliliter of blood) was significantly higher for cephalic blood samples and samples isolated with DGC. Cells formed vascular tubules, had uptake of DiI-Ac-LDL, and expressed endothelial markers by use of IFA and flow cytometry, which confirmed their identity as ECFCs. CONCLUSIONS AND CLINICAL RELEVANCE Maximum yield of ECFCs was obtained for blood samples collected from both the jugular and cephalic veins and use of DGC to isolate cells. Consistent yield of ECFCs from peripheral blood of horses will enable studies to evaluate diagnostic and therapeutic uses.


Assuntos
Células Endoteliais/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Animais , Veias Braquiocefálicas/diagnóstico por imagem , Feminino , Citometria de Fluxo/veterinária , Imunofluorescência/veterinária , Cavalos , Veias Jugulares/diagnóstico por imagem , Masculino , Valores de Referência
12.
Am J Vet Res ; 76(2): 174-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25629916

RESUMO

OBJECTIVE: To isolate and characterize endothelial colony-forming cells (ECFCs; a subtype of endothelial progenitor cells) from peripheral blood samples of horses. SAMPLE: Jugular venous blood samples from 24 adult horses. PROCEDURES: Blood samples were cultured in endothelial cell growth medium. Isolated ECFCs were characterized by use of functional assays of fluorescence-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) uptake and vascular tubule formation in vitro. Expression of endothelial (CD34, CD105, vascular endothelial growth factor receptor 2, and von Willebrand factor) and hematopoietic (CD14) cell markers was assessed through indirect immunofluorescence assay and flow cytometry. The number of passages before senescence was determined through serial evaluation of DiI-Ac-LDL uptake, vascular tubule formation, and cell doubling rates. RESULTS: Samples from 3 horses produced colonies at 12 ± 2.5 days with characteristic endothelial single layer cobblestone morphology and substantial outgrowth on expansion. Equine ECFCs formed vascular tubules in vitro and had uptake of DiI-Ac-LDL (74.9 ± 14.7% positive cells). Tubule formation and DiI-Ac-LDL uptake diminished by passage 5. Equine ECFCs tested positive for von Willebrand factor, vascular endothelial growth factor receptor 2, CD34, and CD105 with an immunofluorescence assay and for CD14 and CD105 via flow cytometry. CONCLUSIONS AND CLINICAL RELEVANCE: ECFCs can be isolated from peripheral blood of horses and have characteristics similar to those described for other species. These cells may have potential therapeutic use in equine diseases associated with ischemia or delayed vascularization.


Assuntos
Técnicas de Cultura de Células/veterinária , Células Endoteliais/citologia , Animais , Diferenciação Celular , Células Endoteliais/metabolismo , Citometria de Fluxo/veterinária , Imunofluorescência/veterinária , Cavalos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA