Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 12(2): e1005888, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26925970

RESUMO

Retinoblastoma (Rb), the most common pediatric intraocular neoplasm, results from inactivation of both alleles of the RB1 tumor suppressor gene. The second allele is most commonly lost, as demonstrated by loss of heterozygosity studies. RB1 germline carriers usually develop bilateral tumors, but some Rb families display low penetrance and variable expressivity. In order to decipher the underlying mechanisms, 23 unrelated low penetrance pedigrees segregating the common c.1981C>T/p.Arg661Trp mutation and other low penetrance mutations were studied. In families segregating the c.1981C>T mutation, we demonstrated, for the first time, a correlation between the gender of the transmitting carrier and penetrance, as evidenced by Fisher's exact test: the probability of being unaffected is 90.3% and 32.5% when the mutation is inherited from the mother and the father, respectively (p-value = 7.10(-7). Interestingly, a similar correlation was observed in families segregating other low penetrance alleles. Consequently, we investigated the putative involvement of an imprinted, modifier gene in low penetrance Rb. We first ruled out a MED4-driven mechanism by MED4 methylation and expression analyses. We then focused on the differentially methylated CpG85 island located in intron 2 of RB1 and showing parent-of-origin-specific DNA methylation. This differential methylation promotes expression of the maternal c.1981C>T allele. We propose that the maternally inherited c.1981C>T/p.Arg661Trp allele retains sufficient tumor suppressor activity to prevent retinoblastoma development. In contrast, when the mutation is paternally transmitted, the low residual activity would mimic a null mutation and subsequently lead to retinoblastoma. This implies that the c.1981C>T mutation is not deleterious per se but needs to be destabilized in order to reach pRb haploinsufficiency and initiate tumorigenesis. We suggest that this phenomenon might be a general mechanism to explain phenotypic differences in low penetrance Rb families.


Assuntos
Mutação , Neoplasias da Retina/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Ilhas de CpG , Metilação de DNA , Feminino , Heterozigoto , Humanos , Masculino , Complexo Mediador/genética , Complexo Mediador/metabolismo , Linhagem , Penetrância , Fenótipo , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Proteína do Retinoblastoma/metabolismo
2.
Nat Commun ; 14(1): 6695, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932267

RESUMO

Mismatch Repair Deficiency (dMMR)/Microsatellite Instability (MSI) is a key biomarker in colorectal cancer (CRC). Universal screening of CRC patients for MSI status is now recommended, but contributes to increased workload for pathologists and delayed therapeutic decisions. Deep learning has the potential to ease dMMR/MSI testing and accelerate oncologist decision making in clinical practice, yet no comprehensive validation of a clinically approved tool has been conducted. We developed MSIntuit, a clinically approved artificial intelligence (AI) based pre-screening tool for MSI detection from haematoxylin-eosin (H&E) stained slides. After training on samples from The Cancer Genome Atlas (TCGA), a blind validation is performed on an independent dataset of 600 consecutive CRC patients. Inter-scanner reliability is studied by digitising each slide using two different scanners. MSIntuit yields a sensitivity of 0.96-0.98, a specificity of 0.47-0.46, and an excellent inter-scanner agreement (Cohen's κ: 0.82). By reaching high sensitivity comparable to gold standard methods while ruling out almost half of the non-MSI population, we show that MSIntuit can effectively serve as a pre-screening tool to alleviate MSI testing burden in clinical practice.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Detecção Precoce de Câncer , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA
3.
Eur J Cancer ; 174: 90-98, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985252

RESUMO

BACKGROUND: The need for developing new biomarkers is increasing with the emergence of many targeted therapies. Artificial Intelligence (AI) algorithms have shown great promise in the medical imaging field to build predictive models. We developed a prognostic model for solid tumour patients using AI on multimodal data. PATIENTS AND METHODS: Our retrospective study included examinations of patients with seven different cancer types performed between 2003 and 2017 in 17 different hospitals. Radiologists annotated all metastases on baseline computed tomography (CT) and ultrasound (US) images. Imaging features were extracted using AI models and used along with the patients' and treatments' metadata. A Cox regression was fitted to predict prognosis. Performance was assessed on a left-out test set with 1000 bootstraps. RESULTS: The model was built on 436 patients and tested on 196 patients (mean age 59, IQR: 51-6, 411 men out of 616 patients). On the whole, 1147 US images were annotated with lesions delineation, and 632 thorax-abdomen-pelvis CTs (total of 301,975 slices) were fully annotated with a total of 9516 lesions. The developed model reaches an average concordance index of 0.71 (0.67-0.76, 95% CI). Using the median predicted risk as a threshold value, the model is able to significantly (log-rank test P value < 0.001) isolate high-risk patients from low-risk patients (respective median OS of 11 and 31 months) with a hazard ratio of 3.5 (2.4-5.2, 95% CI). CONCLUSION: AI was able to extract prognostic features from imaging data, and along with clinical data, allows an accurate stratification of patients' prognoses.


Assuntos
Inteligência Artificial , Neoplasias , Biomarcadores , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
4.
Nat Commun ; 12(1): 634, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504775

RESUMO

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.


Assuntos
COVID-19/diagnóstico , COVID-19/fisiopatologia , Aprendizado Profundo , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , COVID-19/classificação , Humanos , Modelos Biológicos , Análise Multivariada , Prognóstico , Radiologistas , Índice de Gravidade de Doença
5.
Nat Commun ; 12(1): 5578, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552068

RESUMO

Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.


Assuntos
Células Fotorreceptoras Retinianas Cones/patologia , Células Ganglionares da Retina/metabolismo , Neoplasias da Retina/classificação , Retinoblastoma/classificação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Desdiferenciação Celular/genética , Pré-Escolar , Metilação de DNA , Feminino , Expressão Gênica , Heterogeneidade Genética , Humanos , Lactente , Masculino , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Metástase Neoplásica , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/patologia , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia
6.
Nat Commun ; 11(1): 3877, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747659

RESUMO

Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as validated by CD3- and CD20-staining on an independent dataset. The transcriptomic representation learned by HE2RNA can also be transferred on other datasets, even of small size, to increase prediction performance for specific molecular phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the identification of tumors with microsatellite instability.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/genética , RNA-Seq/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos , Humanos , Instabilidade de Microssatélites , Modelos Genéticos , Neoplasias/diagnóstico , Neoplasias/metabolismo
7.
Nat Med ; 25(10): 1519-1525, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591589

RESUMO

Malignant mesothelioma (MM) is an aggressive cancer primarily diagnosed on the basis of histological criteria1. The 2015 World Health Organization classification subdivides mesothelioma tumors into three histological types: epithelioid, biphasic and sarcomatoid MM. MM is a highly complex and heterogeneous disease, rendering its diagnosis and histological typing difficult and leading to suboptimal patient care and decisions regarding treatment modalities2. Here we have developed a new approach-based on deep convolutional neural networks-called MesoNet to accurately predict the overall survival of mesothelioma patients from whole-slide digitized images, without any pathologist-provided locally annotated regions. We validated MesoNet on both an internal validation cohort from the French MESOBANK and an independent cohort from The Cancer Genome Atlas (TCGA). We also demonstrated that the model was more accurate in predicting patient survival than using current pathology practices. Furthermore, unlike classical black-box deep learning methods, MesoNet identified regions contributing to patient outcome prediction. Strikingly, we found that these regions are mainly located in the stroma and are histological features associated with inflammation, cellular diversity and vacuolization. These findings suggest that deep learning models can identify new features predictive of patient survival and potentially lead to new biomarker discoveries.


Assuntos
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Mesotelioma/diagnóstico , Mesotelioma/patologia , Prognóstico , Aprendizado Profundo , Feminino , Humanos , Neoplasias Pulmonares/classificação , Masculino , Mesotelioma/classificação , Mesotelioma Maligno , Gradação de Tumores , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA