Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(11): 2871-2875, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28251927

RESUMO

Toroidal droplets are inherently unstable due to surface tension. They can break up, similar to cylindrical jets, but also exhibit a shrinking instability, which is inherent to the toroidal shape. We investigate the evolution of shrinking toroidal droplets using particle image velocimetry. We obtain the flow field inside the droplets and show that as the torus evolves, its cross-section significantly deviates from circular. We then use the experimentally obtained velocities at the torus interface to theoretically reconstruct the internal flow field. Our calculation correctly describes the experimental results and elucidates the role of those modes that, among the many possible ones, are required to capture all of the relevant experimental features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA