Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Plant Biotechnol J ; 16(3): 727-736, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28850773

RESUMO

Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner. Pluribodies developed using toxin-binding genetic information captured from peripheral blood lymphocytes of hyperimmunized camels recapitulated the overall binding activity of the immune response. Furthermore, an improved plant-made antivenom (plantivenom) was formulated using an in vitro selected pluribody against Bothrops asper snake venom toxins and has been shown to neutralize a wide range of toxin activities and provide protection against lethal venom doses in mice.


Assuntos
Planticorpos/metabolismo , Venenos de Serpentes/antagonistas & inibidores , Biologia Sintética/métodos , Animais , Antivenenos/metabolismo , Bothrops/metabolismo
2.
Biologicals ; 46: 1-5, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28122669

RESUMO

This study assessed the protective effect of active immunization of cattle to prevent the envenomation induced by B. asper venom. Two groups of oxen were immunized with a bothropic toxoid and challenged by an intramuscular injection of either 10 or 50 mg B. asper venom, to induce moderate or severe envenomations, respectively. Non-immunized oxen were used as controls. It was found that immunized oxen developed local edema similar to those observed in non-immunized animals. However, systemic effects were totally prevented in immunized oxen challenged with 10 mg venom, and therefore antivenom treatment was not required. When immunized oxen were challenged with 50 mg venom, coagulopathy was manifested 3-16 h later than in non-immunized oxen, demonstrating a delay in the onset of systemic envenomation. In these animals, active immunization did not eliminate the need for antivenom treatment, but increased the time lapse in which antivenom administration is still effective. All experimentally envenomed oxen completely recovered after a week following venom injection. Our results suggest that immunization of cattle with a bothropic toxoid prevents the development of systemic effects in moderate envenomations by B. asper, but does not abrogate these effects in severe envenomation.


Assuntos
Doenças dos Bovinos/prevenção & controle , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/veterinária , Toxoides/administração & dosagem , Vacinação , Animais , Antivenenos/imunologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Bothrops/imunologia , Bovinos , Doenças dos Bovinos/induzido quimicamente , Doenças dos Bovinos/imunologia , Venenos de Crotalídeos/administração & dosagem , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/imunologia , Edema/prevenção & controle , Injeções Intramusculares , Masculino , Substâncias Protetoras/administração & dosagem , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/prevenção & controle , Análise de Sobrevida , Fatores de Tempo , Toxoides/imunologia , Resultado do Tratamento
3.
Rev Biol Trop ; 65(1): 345-50, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29466649

RESUMO

The assessment of the preclinical neutralizing ability of antivenoms in Latin America is necessary to determine their scope of efficacy. This study was aimed at analyzing the neutralizing efficacy of a polyspecific bothropic-crotalic antivenom manufactured by BIRMEX in Mexico against lethal, hemorrhagic, defibrinogenating and in vitro coagulant activities of the venoms of Bothrops jararaca (Brazil), B. atrox (Perú and Colombia), B. diporus (Argentina), B. mattogrossensis (Bolivia), and B. asper (Costa Rica). Standard laboratory tests to determine these activities were used. In agreement with previous studies with bothropic antivenoms in Latin America, a pattern of cross-neutralization of heterologous venoms was observed. However, the antivenom had low neutralizing potency against defibrinogenating effect of the venoms of B. atrox (Colombia) and B. asper (Costa Rica), and failed to neutralize the in vitro coagulant activity of the venom of B. asper (Costa Rica) at the highest antivenom/venom ratio tested. It is concluded that, with the exception of coagulant and defibrinogenating activities of B. asper (Costa Rica) venom, this antivenom neutralizes toxic effects of various Bothrops sp venoms. Future studies are necessary to assess the efficacy of this antivenom against other viperid venoms.


Assuntos
Antivenenos/farmacologia , Bothrops , Venenos de Crotalídeos/toxicidade , Fatores Imunológicos/farmacologia , Animais , Antivenenos/imunologia , Venenos de Crotalídeos/imunologia , Avaliação Pré-Clínica de Medicamentos , Fatores Imunológicos/imunologia , México , Testes de Neutralização , Reprodutibilidade dos Testes , Mordeduras de Serpentes/tratamento farmacológico
4.
Biologicals ; 43(1): 37-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25458474

RESUMO

There is a need to introduce innovations in the manufacture of snake antivenoms to increase the supply of these products worldwide. In this work, the fractionation of equine hyperimmune plasma with a new methodology that includes an aqueous two phase system (ATPS) as a primary purification step was compared with the traditional method of caprylic acid precipitation. Hyperimmune plasma from horses immunized with the venoms of three snakes from sub-Saharan Africa was used as starting material for the production of both formulations. After being adjusted to the same lethal neutralizing activity, both antivenoms were compared in terms of their immunoreactivity, neutralization of in vitro venom activities, physicochemical characteristics, and stability. Their performance in terms of yield and purity was also assessed. The neutralization profile of in vitro enzymatic activities and the immunoreactivity, analyzed by ELISA and antivenomic approaches, were very similar for both preparations. Likewise, they behaved similarly in stability studies. However, ATPS-fractionated antivenom showed improved physicochemical profile and immunochemical purity and yield, mainly owing to its lower protein content. Additionally, this methodology allowed the recovery of albumin as a byproduct. ATPS purification constitutes a promising technology for antivenom production and should be further evaluated at preclinical and clinical levels.


Assuntos
Antivenenos/imunologia , Imunoglobulina G/imunologia , Animais , Antivenenos/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Cavalos , Água
5.
Toxicon X ; 21: 100183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38274651

RESUMO

Snakebite envenomation is a neglected tropical disease posing a high toll of mortality and morbidity in sub-Saharan Africa. Polyspecific antivenoms of broad effectiveness and specially designed for this region require a detailed understanding of the immunological features of the mamba snake (Dendroaspis spp.) venoms for the selection of the most appropriate antigen combination to produce antivenoms of wide neutralizing scope. Monospecific antisera were generated in rabbits against the venoms of the four species of mambas. The toxic effects of the immunization scheme in the animals were evaluated, antibody titers were estimated using immunochemical assays, and neutralization of lethal activity was assessed. By the end of the immunization schedule, rabbits showed normal values of the majority of hematological parameters tested. No muscle tissue damage was noticed, and no alterations in most serum chemical parameters were observed. Immunological analyses revealed a variable extent of cross-reactivity of the monospecific antisera against the heterologous venoms. The venoms of D. jamesoni and D. viridis generated the antisera with broader cross-reactivity by immunochemical parameters. The venoms of D. polylepis and D. viridis generated the antisera with better cross-neutralization of lethality, although the neutralizing ability of all antisera was lower than 0.16 mg venom/mL antiserum against either homologous or heterologous venoms. These experimental results must be scaled to large animal models used in antivenom manufacture at industrial level to assess whether these predictions are reproducible.

6.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38809847

RESUMO

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Assuntos
Antivenenos , Testes de Neutralização , Animais , Cavalos/imunologia , Antivenenos/imunologia , Antivenenos/administração & dosagem , Camundongos , África Subsaariana , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Venenos de Serpentes/imunologia , Soros Imunes/imunologia , Venenos Elapídicos/imunologia , Mordeduras de Serpentes/imunologia
7.
Biologicals ; 41(2): 93-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23190453

RESUMO

Purity is a characteristic that, together with effectiveness and safety, must be tested to determine the quality of biopharmaceutical products. In therapeutic immunoglobulins, such as human intravenous immunoglobulin (IVIG), purity is evaluated on the basis of physicochemical properties, and is usually assessed by chromatography and electrophoresis. However, in the case of antivenoms these methods fail to discriminate between antibodies towards venom antigens, which constitute the active substance, and antibodies towards non-venom antigens, which are the major impurities in most of the current formulations. The assessment of this aspect of purity requires the use of the immunochemical methods. In this study, it was demonstrated that antivenoms showing physicochemical purity higher than 90% might present immunochemical purity lower than 40%. It is proposed that a comprehensive analysis of antivenom purity should combine physicochemical and immunochemical parameters. In addition, these results are crucial to decide the more appropriate strategies to improve antivenom purity. Taking into account that the current methods of antivenom purification remove most non-antibodies proteins, we propose that efforts must be primarily directed to the improvement of immunization protocols to enhance the antibody response towards venom components in hyperimmunized animals, and secondarily, in the realm of immunoglobulin purification technology.


Assuntos
Especificidade de Anticorpos/imunologia , Antivenenos/imunologia , Venenos de Serpentes/imunologia , Serpentes/imunologia , Animais , Antivenenos/química , Antivenenos/isolamento & purificação , Fenômenos Químicos , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imuno-Histoquímica/métodos , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Fatores Imunológicos/isolamento & purificação , Espectrometria de Massas , Serpentes/classificação , Especificidade da Espécie
8.
PLoS Negl Trop Dis ; 17(8): e0011545, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37582064

RESUMO

BACKGROUND: Envenomations by African snakes represent a high burden in the sub-Sahara region. The design and fabrication of polyspecific antivenoms with a broader effectiveness, specially tailored for its use in sub-Saharan Africa, require a better understanding of the immunological features of different Naja spp. venoms of highest medical impact in Africa; and to select the most appropriate antigen combinations to generate antivenoms of wider neutralizing scope. METHODOLOGY/PRINCIPAL FINDINGS: Rabbit-derived monospecific antisera were raised against the venoms of five spitting cobras and six non-spitting cobras. The effects of immunization in the animal model were assessed, as well as the development of antibody titers, as proved by immunochemical assays and neutralization of lethal, phospholipase A2 and dermonecrotic activities. By the end of the immunization schedule, the immunized rabbits showed normal values of all hematological parameters, and no muscle tissue damage was evidenced, although alterations in aspartate aminotransferase (AST) and alkaline phosphatase (ALP) suggested a degree of hepatic damage caused mainly by spitting cobra venoms. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within the spitting and no-spitting cobras, yet some antisera showed more extensive cross-reactivity than others. The antisera with the widest coverage were those of anti-Naja ashei and anti-N. nigricollis for the spitting cobras, and anti-N. haje and anti-N. senegalensis for the non-spitting cobras. CONCLUSIONS/SIGNIFICANCE: The methods and study design followed provide a rationale for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against cobra venoms in sub-Saharan Africa. Results suggest that venoms from N. ashei, N. nigricollis within the spitting cobras, and N. haje and N. senegalensis within the non-spitting cobras, generate antisera with a broader cross-reactivity. These experimental results should be translated to larger animal models used in antivenom elaboration to assess whether these predictions are reproduced.


Assuntos
Lagomorpha , Naja , Animais , Coelhos , Elapidae , Antivenenos/farmacologia , Soros Imunes , Venenos Elapídicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083683

RESUMO

Emergency mechanical ventilators developed during the pandemic were used to meet the high demand in intensive care units to care for COVID-19 patients. An example of such ventilators is Masi, developed in Peru and installed in more than 15 hospitals around the country. This study aimed to compare Masi's performance with other emergency mechanical ventilators manufactured during the covid-19 pandemic such as Neyün, Spiro Wave and a prototype developed by the Faculty of Engineering of the National University of Asuncion (FIUNA). Three configurations of a test lung were used, combining different values of resistance and compliance (C1, C2 and C3). Ventilators were set to volume-controlled ventilation with tidal volume = 400 mL, respiratory rate = 12 breaths/minute, and positive end-expiratory pressure (PEEP) = 8 cm H2O. These parameters were measured in a series of ten two-minute tests which then were evaluated through a two-way analysis of variance, considering the type of ventilator and test lung configuration as the two independent variables. For target values, MASI delivered VT that ranged from 319 to 432 ml (-20 to +8%), respiratory rate of 12 bpm, and PEEP from 8.4 to 9.5 cm H2O (+5 to +20%). In contrast, for instance, Neyün delivered VT that ranged from 199 to 543 ml (-50 to +35%) and PEEP from 7.05 to 9.21 cm H2O (--11 to +15%), with p<0.05. The analysis of variance showed that he differences between preset and delivered parameters were influenced by the type of ventilator and, significantly, by the test lung configuration.Clinical Relevance- This establishes the most advantageous conditions in which three emergency mechanical ventilators work and a quantitative perspective in this topic.


Assuntos
COVID-19 , Pandemias , Masculino , Humanos , COVID-19/epidemiologia , COVID-19/terapia , Ventiladores Mecânicos , Respiração Artificial , Respiração com Pressão Positiva
10.
Toxicon X ; 18: 100158, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37180815

RESUMO

During the production of snake antivenoms, the animals used as immunoglobulin source are subjected to processes that could deteriorate their physical condition. Therefore, these conditions must be carefully designed and validated. In this work, the immunization and bleeding protocols applied to horses used to produce the African polyspecific antivenom EchiTAb-plus-ICP were evaluated regarding their effects on the horses' health. The study focused on horses that had been previously immunized with venoms and then received periodic booster venom injections for antivenom production. It was found that the periodic immunization with 5 mg of a mixture of venoms of Bitis arietans, Echis ocellatus, Dendroaspis polylepis, and Naja nigricollis did not induce systemic signs of envenomation, and only caused mild swelling at the injection site, which did not evolve to abscesses, fistulas, or fibrosis. Three consecutive days of bleeding, collecting 6-8 L of blood per day, and self-transfusing the red blood cells (RBC) in the second and third days, did not induce evident cardiorespiratory alterations. However, this procedure caused significant reductions in RBC, hematocrit, hemoglobin, and total plasma protein values. Seven weeks after bleeding, these parameters were recovered, and horses were ready for the next immunization/bleeding cycle. The intravenous administration of equine albumin, at a dose of 2 g/kg body weight, increased the apparent plasma volume and the albumin concentration. However, this procedure induced early adverse reactions and transient alterations of the serum levels of the enzyme gamma-glutamyl transferase (GGT), thus suggesting some degree of hepatic injury. It was concluded that immunization and bleeding as described in this work do not cause significant clinical alterations in the horse's health, except for a transient drop in some hematological parameters. The albumin-based fluid therapy used does not hasten the recovery after bleeding but instead induces adverse events in the animals.

11.
Toxicon ; 234: 107301, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37741576

RESUMO

Venom-induced consumption coagulopathy and thrombocytopenia are common and potentially severe manifestations of viperid snakebite envenoming since they contribute to local and systemic hemorrhage. Therefore, the assessment of the efficacy of antivenoms to neutralize coagulopathic and thrombocytopenic toxins should be part of the preclinical evaluation of these drugs. To evaluate the efficacy of the polyvalent (Crotalinae) antivenom produced in Costa Rica, in this study we have used a mouse model of coagulopathy and thrombocytopenia induced by the venom of Bothrops asper, based on the bolus intravenous (i.v.) injection of venom. When venom and antivenom were incubated before injection, or when antivenom was administered i.v. immediately after venom injection, venom-induced hemostatic alterations were largely abrogated. We also studied the recovery rate of clotting parameters in conditions where antivenom was administered when mice were coagulopathic. Some parameters recovered more rapidly in antivenom-treated mice than in control envenomed animals, but others showed a spontaneous recovery without antivenom. This is due to a rapid clearance of plasma venom levels in these experimental conditions. This implies that models based on the bolus i.v. injection of venom have limitations for assessing the effect of antivenom in the recovery of clotting alterations once coagulopathy has developed. It is suggested that alternative models should be developed based on a slower systemic absorption of venom. Overall, our findings provide a protocol for the preclinical evaluation of antivenoms and demonstrate that the polyvalent antivenom is effective in neutralizing the toxins of B. asper venom responsible for coagulopathy and thrombocytopenia.

12.
Biologicals ; 40(2): 129-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22266304

RESUMO

Low pH treatment improves the tolerance to intravenous infusion, the stability, and the viral safety of various therapeutic immunoglobulins G preparations, but has never been evaluated for horse plasma-derived antivenoms. We have studied the impact of low pH formulation on the quality, safety, stability, potency and viral inactivation of a whole IgG antivenom used to treat viperid snake bite envenoming. Horse plasma-derived whole immunoglobulins purified by caprylic acid were incubated for 24 h at low pH in the presence of 4% sorbitol, then sterile-filtered and stored liquid at 2-8°C. Appearance, aggregates, purity, safety tests in mice, venom antibody titre, and neutralization potency tests were controlled. Low pH treatment did not affect the physico-chemical characteristics, safety and potency of antivenom for at least 6 months of storage, but a major increase in aggregates was observed. In vitro antibody titre and in vivo neutralizing potency were maintained. There were ≥ 5.5 log inactivation of Herpes Simplex Virus-1, an enveloped virus, but no significant inactivation of the non-enveloped Poliovirus type 3. Low pH treatment appears feasible to improve the viral safety of antivenoms without affecting the neutralization potency. The possibility to formulate antivenoms at low pH requires further investigations to avoid formation of aggregates.


Assuntos
Antivenenos/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Antivenenos/química , Antivenenos/imunologia , Química Farmacêutica , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Controle de Qualidade , Segurança , Inativação de Vírus
13.
PLoS Negl Trop Dis ; 16(8): e0010643, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960772

RESUMO

BACKGROUND: Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp. and Echis spp. represent the most important viperid snake genera in Africa. METHODOLOGY/PRINCIPAL FINDINGS: Eight rabbit-derived monospecific antisera were raised against the venoms of four species of Bitis spp. and four species of Echis spp. The effects of immunization in the rabbits were assessed, as well as the development of antibody titers, as judged by immunochemical assays and neutralization of lethal, hemorrhagic, and in vitro coagulant effects. At the end of immunizations, local and pulmonary hemorrhage, together with slight increments in the plasma activity of creatine kinase (CK), were observed owing to the action of hemorrhagic and myotoxic venom components. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within each genus, although some antisera provided a more extensive cross-reactivity than others. The venoms that generated antisera with the broadest coverage were those of Bitis gabonica and B. rhinoceros within Bitis spp. and Echis leucogaster within Echis spp. CONCLUSIONS/SIGNIFICANCE: The methodology followed in this study provides a rational basis for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against viperid venoms in sub-Saharan Africa. Results suggest that the venoms of B. gabonica, B. rhinoceros, and E. leucogaster generate antisera with the broadest cross-reactivity within their genera. These experimental results in rabbits need to be translated to large animals used in antivenom production to assess whether these predictions are reproduced in horses or sheep.


Assuntos
Viperidae , África Subsaariana , Animais , Antivenenos , Hemorragia , Cavalos , Soros Imunes , Coelhos , Ovinos , Venenos de Serpentes , Serpentes
14.
Vaccine X ; 12: 100233, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36337837

RESUMO

Adjuvant emulsions are widely used to enhance the antibody response in animals used as immunoglobulin source to produce snake antivenoms. We tested the performance of four commercial emulsion adjuvants (Montanide, Freund, Carbigen, and Emulsigen-D) and an experimental adjuvant (QH-769) in the antibody response of horses towards venoms of the African snakes Bitis arietans, Echis ocellatus, Dendroaspis polylepis and Naja nigricollis. Montanide, Freund and Carbigen adjuvants generated the highest immune response but induced moderate/severe local lesions at the site of injection. In contrast, Emulsigen-D and QH-769 adjuvants generated the lowest immune response and low incidence of local lesions. No evidence of systemic alterations was observed in the horses immunized with any of the adjuvants. It is suggested that the use of Montanide or Freund-based emulsions in the first immunization steps, followed by the use of Emulsigen-D, QH-769 or similar adjuvants in the following injections, could result in a satisfactory immune response against snake venoms, while not inducing serious local deleterious effects.

15.
J Proteome Res ; 10(3): 1266-80, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21171584

RESUMO

Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N. pallida revealed similar compositional trends. The high content of cytotoxins and PLA(2)s may account for the extensive tissue necrosis characteristic of the envenomings by these species. The high abundance of a type I α-neurotoxin in N. nubiae may be responsible for the high lethal toxicity of this venom (in rodents). The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests. It partially immunodepleted 3FTx and PLA(2)s and completely immunodepleted SVMPs and CRISPs in all venoms. The antivenom neutralized the dermonecrotic and PLA(2) activities of all African Naja venoms, whereas lethality was eliminated in the venoms of N. nigricollis, N. mossambica, and N. pallida but not in those of N. nubiae and N. katiensis. The lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region. The impaired activity of EchiTAb-Plus-ICP against N. katiensis may not represent a major concern. This species is sympatric with N. nigricollis in many regions of Africa, although very few bites have been attributed to it.


Assuntos
Antivenenos/química , Antivenenos/imunologia , Venenos Elapídicos/química , Elapidae , Testes de Neutralização/métodos , África , Sequência de Aminoácidos , Animais , Antivenenos/uso terapêutico , Criança , Cromatografia Líquida de Alta Pressão/métodos , Elapidae/classificação , Humanos , Espectrometria de Massas/métodos , Metaloproteases/análise , Metaloproteases/genética , Camundongos , Dados de Sequência Molecular , Filogenia , Proteínas/análise , Proteínas/genética , Proteoma/análise , Mordeduras de Serpentes/tratamento farmacológico
16.
Toxicon ; 204: 1-4, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687716

RESUMO

This work is aimed to bring insights on the potential sexual dimorphism differences on the venom composition of Bothrops asper and Crotalus simus to expand the knowledge of the venom variability that might improve the antivenom design. Biological characterization of venoms of each sex in both species did not show significant qualitative differences. Considerations on the sexual venom variations in these species are not relevant for choosing the snake donors for venom production.


Assuntos
Bothrops , Venenos de Crotalídeos , Viperidae , Animais , Antivenenos , Crotalus , Caracteres Sexuais
17.
J Proteomics ; 246: 104315, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34216808

RESUMO

The proteomic, enzymatic, toxicological, and immunogenic profiles of the venom of C. d. pifanorum were studied. It was found that venom of C. d. pifanorum is composed of 63% phospholipases A2 (PLA2s), 13% serine proteinases (SVSPs), 8% bradykinin-potentiating peptides (BPPs), 4% L-amino acid oxidases (LAAOs), 3% metalloproteinases (SVMPs), and other minor components. This composition allows the venom to exert lethal, PLA2, myotoxic, coagulant and defibrinogenating activities, but no azocaseinolytic or hemorrhagic activities. The addition of C. d. pifanorum venom to the group of venoms used as immunogens to produce the Central American antivenom PoliVal-ICP (i.e., venoms of Bothrops asper, Crotalus simus and Lachesis stenophrys) resulted in 1) the expansion of the neutralization scope of the antivenom to cover the venom of C. d. pifanorum and other antigenically related venom (i.e., C. s. scutulatus venom), 2) improvement of the neutralizing potency towards the venom of C. simus, and 3) no significant reduction of the neutralization of venoms of B. asper and L. stenophrys. It was concluded that supplementation of the immunogens used to produce PoliVal-ICP with the venom of C. d. pifanorum is a viable alternative to expand the neutralization scope of the antivenom. BIOLOGICAL SIGNIFICANCE: The venom of Crotalus durissus pifanorum from Venezuela has a proteomic profile like those of other subspecies of the South American rattlesnake C. durissus, with predominance of phospholipases A2 (especially crotoxin) and serine proteinases. This explains a toxicological profile characterized by neurotoxicity, myotoxicity, and coagulopathies, but being devoid of hemorrhagic activity. The antivenom used in Central America (PoliVal-ICP) includes the venom of C. simus, which has a different composition, in the immunizing strategy. Accordingly, this antivenom does not neutralize C. d. pifanorum venom. The addition of C. d. pifanorum venom to the immunizing mixture of PoliVal-ICP expands the neutralizing scope of this antivenom, to cover additional rattlesnake venoms, while not affecting the response to C. simus, Bothrops asper and Lachesis stenophrys venoms. This represents an improvement of the current PoliVal-ICP.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Antivenenos , América Central , Venenos de Crotalídeos/toxicidade , Proteômica
18.
Toxicon ; 202: 20-26, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34562491

RESUMO

Snake venoms are mixtures of proteins whose physicochemical features confer them toxicity and immunogenicity. Animals (e.g., horses or sheep) immunized with snake venoms produce antibodies towards the venom proteins. Since these antibodies can neutralize the venom toxicity, they have been used to formulate snake antivenoms. The efficacy of the antivenoms is widely accepted, and standard venoms are expected to be representative of the snake's population that inhabit in the region where the antivenom is intended to be used. The representativeness of a single venom collected from a Crotalus simus snake, and its usefulness as standard venom to produce an antivenom is evaluated. The use of an "average venom" might be as representative of the population intended to be used, as the standard venom composed by many venom samples. Variations in the relative abundance concentration of crotoxin in the C. simus leads to different clinical manifestations, as well as differences in the neutralization efficacy of the antivenoms. A monovalent anti-Cs antivenom was produced from a single venom C. simus specimen, and its efficacy in neutralizing the lethal activity of 30 C. simus snakes was tested. Despite the variations in the relative abundance content of crotoxin found in the proteomes, the monovalent anti-Cs antivenom was successful in neutralize the toxicity caused by the variations on the venom composition of three different snake population used. Interestingly, it seems that the sex is not a key factor in the lethality of the venoms tested. The concept of representative venom mixtures for immunization should be revised for the case of C. simus on the populations found in Costa Rica, since it might use as less as one representative individual whose venom covers the mainly toxic enzymes.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Antivenenos , Costa Rica , Venenos de Crotalídeos/toxicidade , Crotalus , Cavalos , Ovinos
19.
J Proteomics ; 240: 104196, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33775842

RESUMO

Cobras are the most medically important elapid snakes in Africa. The African genera Naja and Hemachatus include snakes with neurotoxic and cytotoxic venoms, with shared biochemical, toxinological and antigenic characteristics. We have studied the antigenic cross-reactivity of four sub-Saharan Africa cobra venoms against an experimental monospecific Hemachatus haemachatus antivenom through comparative proteomics, preclinical assessment of neutralization, and third generation antivenomics. The venoms of H. haemachatus, N. annulifera, N. mossambica and N. nigricollis share an overall qualitative family toxin composition but depart in their proportions of three-finger toxin (3FTxs) classes, phospholipases A2 (PLA2s), snake venom metalloproteinases (SVMPs), and cysteine-rich secretory proteins (CRISPs). A monospecific anti-Hemachatus antivenom produced by Costa Rican Instituto Clodomiro Picado neutralized the lethal activity of the homologous and heterologous neuro/cytotoxic (H. haemachatus) and cyto/cardiotoxic (N. mossambica and N. nigricollis) venoms of the three spitting cobras sampled, while it was ineffective against the lethal and toxic activities of the neurotoxic venom of the non-spitting snouted cobra N. annulifera. The ability of the anti-Hemachatus-ICP antivenom to neutralize toxic (dermonecrotic and anticoagulant) and enzymatic (PLA2) activities of spitting cobra venoms suggested a closer kinship of H. haemachatus and Naja subgenus Afrocobra spitting cobras than to Naja subgenus Uraeus neurotoxic taxa. These results were confirmed by third generation antivenomics. BIOLOGICAL SIGNIFICANCE: African Naja species represent the most widespread medically important elapid snakes across Africa. To gain deeper insight into the spectrum of medically relevant toxins, we compared the proteome of three spitting cobras (Hemachatus haemachatus, Naja mossambica and N. nigricollis) and one non-spitting cobra (N. annulifera). Three finger toxins and phospholipases A2 are the two major protein families among the venoms analyzed. The development of antivenoms of broad species coverage is an urgent need in sub-Saharan Africa. An equine antivenom raised against H. haemachatus venom showed cross-reactivity with the venoms of H. haemachatus, N. mossambica and N. nigricollis, while having poor recognition of the venom of N. annulifera. This immunological information provides clues for the design of optimum venom mixtures for the preparation of broad spectrum antivenoms.


Assuntos
Antivenenos , Hemachatus , África Subsaariana , Animais , Venenos Elapídicos/toxicidade , Elapidae , Cavalos
20.
Front Med Technol ; 3: 772275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047966

RESUMO

Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA