Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Annu Rev Cell Dev Biol ; 36: 469-509, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021821

RESUMO

Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.


Assuntos
Relógios Circadianos/fisiologia , Desenvolvimento Embrionário , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Linhagem da Célula/genética , Relógios Circadianos/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Humanos , Fatores de Tempo
2.
Cell ; 173(1): 130-139.e10, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526461

RESUMO

Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.


Assuntos
Barreira Hematoencefálica/metabolismo , Relógios Circadianos , Drosophila/metabolismo , Rodaminas/metabolismo , Xenobióticos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Relógios Circadianos/efeitos dos fármacos , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Junções Comunicantes/metabolismo , Magnésio/metabolismo , Neuroglia/metabolismo , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/veterinária
3.
Cell ; 171(6): 1232-1235, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195066

RESUMO

The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease.


Assuntos
Relógios Circadianos , Prêmio Nobel , Fisiologia/história , Animais , Proteínas CLOCK/metabolismo , História do Século XX , História do Século XXI , Humanos
4.
Nature ; 630(8016): 475-483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839958

RESUMO

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Assuntos
Envelhecimento , Encéfalo , Senescência Celular , Drosophila melanogaster , Metabolismo dos Lipídeos , Mitocôndrias , Neuroglia , Animais , Feminino , Humanos , Masculino , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Longevidade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Fator de Transcrição AP-1/metabolismo , Lipídeos , Inflamação/metabolismo , Inflamação/patologia
5.
Cell ; 157(3): 689-701, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766812

RESUMO

Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.


Assuntos
Relógios Circadianos , Drosophila/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/fisiologia , Ritmo Circadiano , Drosophila/citologia , Neurônios/citologia , Análise de Célula Única , Transcriptoma
6.
Annu Rev Neurosci ; 43: 119-140, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32075519

RESUMO

While neurons and circuits are almost unequivocally considered to be the computational units and actuators of behavior, a complete understanding of the nervous system must incorporate glial cells. Far beyond a copious but passive substrate, glial influence is inextricable from neuronal physiology, whether during developmental guidance and synaptic shaping or through the trophic support, neurotransmitter and ion homeostasis, cytokine signaling and immune function, and debris engulfment contributions that this class provides throughout an organism's life. With such essential functions, among a growing literature of nuanced roles, it follows that glia are consequential to behavior in adult animals, with novel genetic tools allowing for the investigation of these phenomena in living organisms. We discuss here the relevance of glia for maintaining circadian rhythms and also for serving functions of sleep.


Assuntos
Ritmo Circadiano/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Drosophila/fisiologia , Humanos , Neurotransmissores/metabolismo
7.
Cell ; 148(4): 765-79, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22305007

RESUMO

Although molecular components of the circadian clock are known, mechanisms that transmit signals from the clock and produce rhythmic behavior are poorly understood. We find that the microRNA miR-279 regulates the JAK/STAT pathway to drive rest:activity rhythms in Drosophila. Overexpression of microRNA miR-279 or miR-279 deletion attenuates rest:activity rhythms. Oscillations of the clock protein PERIOD are normal in pacemaker neurons lacking miR-279, suggesting that miR-279 acts downstream of the clock. We identify the JAK/STAT ligand, Upd, as a target of miR-279 and show that knockdown of Upd rescues the behavioral phenotype of miR-279 mutants. Manipulations of the JAK/STAT pathway also disrupt circadian rhythms. In addition, central clock neurons project in the vicinity of Upd-expressing neurons, providing a possible physical connection by which the central clock could regulate JAK/STAT signaling to control rest:activity rhythms.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , MicroRNAs/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Comportamento Animal , Relógios Biológicos , Janus Quinases/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Fatores de Transcrição STAT/metabolismo
8.
Nature ; 589(7843): 582-585, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268891

RESUMO

Sleep remains a major mystery of biology, with little understood about its basic function. One of the most commonly proposed functions of sleep is the consolidation of memory1-3. However, as conditions such as starvation require the organism to be awake and active4, the ability to switch to a memory consolidation mechanism that is not contingent on sleep may confer an evolutionary advantage. Here we identify an adaptive circuit-based mechanism that enables Drosophila to form sleep-dependent and sleep-independent memory. Flies fed after appetitive conditioning needed increased sleep for memory consolidation, but flies starved after training did not require sleep to form memories. Memory in fed flies is mediated by the anterior-posterior α'/ß' neurons of the mushroom body, while memory under starvation is mediated by medial α'/ß' neurons. Sleep-dependent and sleep-independent memory rely on distinct dopaminergic neurons and corresponding mushroom body output neurons. However, sleep and memory are coupled such that mushroom body neurons required for sleep-dependent memory also promote sleep. Flies lacking Neuropeptide F display sleep-dependent memory even when starved, suggesting that circuit selection is determined by hunger. This plasticity in memory circuits enables flies to retain essential information in changing environments.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Fome/fisiologia , Consolidação da Memória/fisiologia , Plasticidade Neuronal , Sono/fisiologia , Animais , Comportamento Apetitivo , Neurônios Dopaminérgicos/fisiologia , Drosophila melanogaster/citologia , Comportamento Alimentar/psicologia , Feminino , Masculino , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Inanição/fisiopatologia , Vigília/fisiologia
9.
Trends Genet ; 39(5): 338-339, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858881

RESUMO

Distilling insomnia genome-wide association study (GWAS) variants, Palermo and colleagues identified several genes that participate in sleep regulation in two different model organisms. This workflow sets off an innovative strategy to extract biological relevance from large human genomic databases.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Fenótipo , Sono/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Cell ; 146(2): 194-207, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784243

RESUMO

Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered ∼14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep.


Assuntos
Transtornos do Sono-Vigília/genética , Sono/genética , Animais , Relógios Circadianos , Estudo de Associação Genômica Ampla , Humanos , Modelos Animais , Proteínas do Tecido Nervoso/fisiologia , Neurotransmissores/metabolismo , Transdução de Sinais , Sono/fisiologia , Transtornos do Sono-Vigília/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 120(5): e2217532120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689661

RESUMO

The gut microbiome is well known to impact host physiology and health. Given widespread control of physiology by circadian clocks, we asked how the microbiome interacts with circadian rhythms in the Drosophila gut. The microbiome did not cycle in flies fed ad libitum, and timed feeding (TF) drove limited cycling only in clockless per01 flies. However, TF and loss of the microbiome influenced the composition of the gut cycling transcriptome, independently and together. Moreover, both interventions increased the amplitude of rhythmic gene expression, with effects of TF at least partly due to changes in histone acetylation. Contrary to expectations, timed feeding rendered animals more sensitive to stress. Analysis of microbiome function in circadian physiology revealed that germ-free flies reset more rapidly with shifts in the light:dark cycle. We propose that the microbiome stabilizes cycling in the host gut to prevent rapid fluctuations with changing environmental conditions.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Animais , Ritmo Circadiano/genética , Drosophila/fisiologia , Fotoperíodo
12.
J Proteome Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836855

RESUMO

Sleep is regulated via circadian mechanisms, but effects of sleep disruption on physiological rhythms, in particular metabolic cycling, remain unclear. To examine this question, we probed diurnal metabolic alterations of two Drosophila short sleep mutants, fumin and sleepless. Samples were collected with high temporal sampling (every 2 h) over 24 h under a 12:12 light:dark cycle, and profiling was done using an ion-switching LCMS/MS method. Fewer metabolites with 24 h oscillations were noted with short sleep (50 and 46 in fumin and sleepless, BH. Q < 0.2 by RAIN analysis) compared to a wild-type control (iso31, 63 with BH. Q < 0.2), and peak phases of the sleep mutants were consolidated into two major phase peaks at mid-day and middle of night. Overall, altered nicotinate/nicotinamide, alanine/aspartate/glutamate, acetylcholine, glyoxylate/dicarboxylate, and TCA cycle metabolism were observed in the short sleep mutants, indicative of increased energetic demand and oxidative stress compared to wild type. Both changes in cycling and discriminant models suggest unique alterations in the dark period indicative of constrained metabolic networks. Thus, we conclude that sleep loss alters metabolic function uniquely throughout the day, and further examination of specific mechanisms is warranted.

13.
Cell ; 139(2): 225-7, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837025

RESUMO

Examining different aspects of learning and memory, Claridge-Chang et al. (2009) and Krashes et al. (2009) converge on the same set of neurons in the protocerebral posterior lateral 1 (PPL1) cluster in Drosophila melanogaster. The different roles attributed to PPL1 neurons demonstrate heterogeneity of function in small neuronal subsets of the Drosophila brain.


Assuntos
Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Aprendizagem , Memória , Vias Neurais
14.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782479

RESUMO

Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin+ neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin+ neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin+ neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin+ locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin+ neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin+ neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Sono/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Homeostase , Locomoção , Mutação , Privação do Sono , Vigília/fisiologia
15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658368

RESUMO

Regulation of circadian behavior and physiology by the Drosophila brain clock requires communication from central clock neurons to downstream output regions, but the mechanism by which clock cells regulate downstream targets is not known. We show here that the pars intercerebralis (PI), previously identified as a target of the morning cells in the clock network, also receives input from evening cells. We determined that morning and evening clock neurons have time-of-day-dependent connectivity to the PI, which is regulated by specific peptides as well as by fast neurotransmitters. Interestingly, PI cells that secrete the peptide DH44, and control rest:activity rhythms, are inhibited by clock inputs while insulin-producing cells (IPCs) are activated, indicating that the same clock cells can use different mechanisms to drive cycling in output neurons. Inputs of morning cells to IPCs are relevant for the circadian rhythm of feeding, reinforcing the role of the PI as a circadian relay that controls multiple behavioral outputs. Our findings provide mechanisms by which clock neurons signal to nonclock cells to drive rhythms of behavior.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Animais , Drosophila
16.
Genes Dev ; 30(23): 2596-2606, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979876

RESUMO

Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.


Assuntos
Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Proteínas de Drosophila/genética , Drosophila/fisiologia , Ingestão de Alimentos , Regulação da Expressão Gênica , Animais , Ritmo Circadiano/genética , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fenômenos Eletromagnéticos , Corpo Adiposo/metabolismo , Insulina/metabolismo , Masculino , Neurônios/fisiologia
17.
J Neurosci ; 42(18): 3856-3867, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361706

RESUMO

Sleep is a universally conserved physiological state which contributes toward basic organismal functions, including cognitive operations such as learning and memory. Intriguingly, organisms can sometimes form memory even without sleep, such that Drosophila display sleep-dependent and sleep-independent memory in an olfactory appetitive training paradigm. Sleep-dependent memory can be elicited by the perception of sweet taste, and we now show that a mixed-sex population of flies maintained on sorbitol, a tasteless but nutritive substance, do not require sleep for memory consolidation. Consistent with this, silencing sugar-sensing gustatory receptor neurons in fed flies triggers a switch to sleep-independent memory consolidation, whereas activating sugar-sensing gustatory receptor neurons results in the formation of sleep-dependent memory in starved flies. Sleep-dependent and sleep-independent memory relies on distinct subsets of reward signaling protocerebral anterior medial dopaminergic neurons (PAM DANs) such that PAM-ß'2mp DANs mediate memory in fed flies whereas PAM-α1 DANs are required in starved flies. Correspondingly, we observed a feeding-dependent calcium increase in PAM-ß'2mp DANs, but not in PAM-α1 DANs. Following training, the presence of sweet sugars recruits PAM-ß'2mp DANs, whereas tasteless medium increases calcium in PAM-α1 DANs. Together, this work identifies mechanistic underpinnings of sleep-dependent memory consolidation, in particular demonstrating a role for the processing of sweet taste reward signals.SIGNIFICANCE STATEMENT Sleep is essential for encoding and consolidating memories, but animals must often suppress sleep for survival. Consequently, Drosophila have evolved sleep-independent consolidation that allows retention of essential information without sleep. In the presence of food, sleep is required for memory, but mechanisms that transmit signals from food cues to regulate the need for sleep in memory are largely unknown. We found that sweet-sensing neurons drive the recruitment of specific reward signaling dopaminergic neurons to establish sleep-dependent memory. Conversely, in the absence of a sweet stimulus, different neurons are activated within the same dopaminergic cluster for sleep-independent memory consolidation. Therefore, the processing of sleep-dependent memory relies on the presence of sweet sugars that signal through reward circuitry.


Assuntos
Drosophila melanogaster , Paladar , Animais , Cálcio , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Sono , Açúcares , Paladar/fisiologia
18.
PLoS Biol ; 17(4): e3000228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039152

RESUMO

Circadian disruption has multiple pathological consequences, but the underlying mechanisms are largely unknown. To address such mechanisms, we subjected transformed cultured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag scheme, and assayed a range of cellular functions. The results indicated a specific circadian clock-dependent increase in cell proliferation. Transcriptome analysis revealed up-regulation of G1/S phase transition genes (myelocytomatosis oncogene cellular homolog [Myc], cyclin D1/3, chromatin licensing and DNA replication factor 1 [Cdt1]), concomitant with increased phosphorylation of the retinoblastoma (RB) protein by cyclin-dependent kinase (CDK) 4/6 and increased G1-S progression. Phospho-RB (Ser807/811) was found to oscillate in a circadian fashion and exhibit phase-shifted rhythms in circadian desynchronized cells. Consistent with circadian regulation, a CDK4/6 inhibitor approved for cancer treatment reduced growth of cultured cells and mouse tumors in a time-of-day-specific manner. Our study identifies a mechanism that underlies effects of circadian disruption on tumor growth and underscores the use of treatment timed to endogenous circadian rhythms.


Assuntos
Transtornos Cronobiológicos/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/metabolismo , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Fase G1/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteína do Retinoblastoma , Fase S/fisiologia
19.
Eur J Neurosci ; 51(1): 268-281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059181

RESUMO

A central question in the circadian biology field concerns the mechanisms that translate ~24-hr oscillations of the molecular clock into overt rhythms. Drosophila melanogaster is a powerful system that provided the first understanding of how molecular clocks are generated and is now illuminating the neural basis of circadian behavior. The identity of ~150 clock neurons in the Drosophila brain and their roles in shaping circadian rhythms of locomotor activity have been described before. This review summarizes mechanisms that transmit time-of-day signals from the clock, within the clock network as well as downstream of it. We also discuss the identification of functional multisynaptic circuits between clock neurons and output neurons that regulate locomotor activity.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Encéfalo/metabolismo , Ritmo Circadiano , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
20.
Proc Natl Acad Sci U S A ; 114(8): E1564-E1571, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28179566

RESUMO

Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.


Assuntos
Cognição/fisiologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Doenças Metabólicas/fisiopatologia , Privação do Sono/fisiopatologia , Adulto , Animais , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Trato Gastrointestinal/fisiopatologia , Genes de RNAr , Voluntários Saudáveis , Humanos , Masculino , Doenças Metabólicas/microbiologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Privação do Sono/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA