Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Radiology ; 302(2): 380-389, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34751618

RESUMO

Background Lack of standardization in CT protocol choice contributes to radiation dose variation. Purpose To create a framework to assess radiation doses within broad CT categories defined according to body region and clinical imaging indication and to cluster indications according to the dose required for sufficient image quality. Materials and Methods This was a retrospective study using Digital Imaging and Communications in Medicine metadata. CT examinations in adults from January 1, 2016 to December 31, 2019 from the University of California San Francisco International CT Dose Registry were grouped into 19 categories according to body region and required radiation dose levels. Five body regions had a single dose range (ie, extremities, neck, thoracolumbar spine, combined chest and abdomen, and combined thoracolumbar spine). Five additional regions were subdivided according to dose. Head, chest, cardiac, and abdomen each had low, routine, and high dose categories; combined head and neck had routine and high dose categories. For each category, the median and 75th percentile (ie, diagnostic reference level [DRL]) were determined for dose-length product, and the variation in dose within categories versus across categories was calculated and compared using an analysis of variance. Relative median and DRL (95% CI) doses comparing high dose versus low dose categories were calculated. Results Among 4.5 million examinations, the median and DRL doses varied approximately 10 times between categories compared with between indications within categories. For head, chest, abdomen, and cardiac (3 266 546 examinations [72%]), the relative median doses were higher in examinations assigned to the high dose categories than in examinations assigned to the low dose categories, suggesting the assignment of indications to the broad categories is valid (head, 3.4-fold higher [95% CI: 3.4, 3.5]; chest, 9.6 [95% CI: 9.3, 10.0]; abdomen, 2.4 [95% CI: 2.4, 2.5]; and cardiac, 18.1 [95% CI: 17.7, 18.6]). Results were similar for DRL doses (all P < .001). Conclusion Broad categories based on image quality requirements are a suitable framework for simplifying radiation dose assessment, according to expected variation between and within categories. © RSNA, 2021 See also the editorial by Mahesh in this issue.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Idoso , Feminino , Humanos , Masculino , Metadados , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Pediatr Radiol ; 52(3): 445-452, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34866159

RESUMO

BACKGROUND: Radiation dose metrics vary by the calibration reference phantom used to report doses. By convention, 16-cm diameter cylindrical polymethyl-methacyrlate phantoms are used for head imaging and 32-cm diameter phantoms are used for body imaging in adults. Actual usage patterns in children remain under-documented. OBJECTIVE: This study uses the University of California San Francisco International CT Dose Registry to describe phantom selection in children by patient age, body region and scanner manufacturer, and the consequent impact on radiation doses. MATERIALS AND METHODS: For 106,837 pediatric computed tomography (CT) exams collected between Jan. 1, 2015, and Nov. 2, 2020, in children up to 17 years of age from 118 hospitals and imaging facilities, we describe reference phantom use patterns by body region, age and manufacturer, and median and 75th-percentile dose-length product (DLP) and volume CT dose index (CTDIvol) doses when using 16-cm vs. 32-cm phantoms. RESULTS: There was relatively consistent phantom selection by body region. Overall, 98.0% of brain and skull examinations referenced 16-cm phantoms, and 95.7% of chest, 94.4% of abdomen and 100% of cervical-spine examinations referenced 32-cm phantoms. Only GE deviated from this practice, reporting chest and abdomen scans using 16-cm phantoms with some frequency in children up to 10 years of age. DLP and CTDIvol values from 16-cm phantom-referenced scans were 2-3 times higher than 32-cm phantom-referenced scans. CONCLUSION: REFERENCE PHANTOM SELECTION IS HIGHLY CONSISTENT, WITH A SMALL BUT SIGNIFICANT NUMBER OF ABDOMEN AND CHEST SCANS (~5%) USING 16-CM PHANTOMS IN YOUNGER CHILDREN, WHICH PRODUCES DLP VALUES APPROXIMATELY TWICE AS HIGH AS EXAMS REFERENCED TO 32-CM PHANTOMS.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Adulto , Criança , Humanos , Imagens de Fantasmas , Doses de Radiação , Sistema de Registros , Tomografia Computadorizada por Raios X/métodos
3.
J Appl Clin Med Phys ; 23(12): e13777, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125203

RESUMO

Entry into the field of clinical medical physics is most commonly accomplished through the completion of a Commission on Accreditation of Medical Physics Educational Programs (CAMPEP)-accredited graduate and residency program. To allow a mechanism to bring valuable expertise from other disciplines into clinical practice in medical physics, an "alternative pathway" approach was also established. To ensure those trainees who have completed a doctoral degree in physics or a related discipline have the appropriate background and didactic training in medical physics, certificate programs and a CAMPEP-accreditation process for these programs were initiated. However, medical physics-specific didactic, research, and clinical exposure of those entering medical physics residencies from these certificate programs is often comparatively modest when evaluated against individuals holding Master's and/or Doctoral degrees in CAMPEP-accredited graduate programs. In 2016, the AAPM approved the formation of Task Group (TG) 298, "Alternative Pathway Candidate Education and Training." The TG was charged with reviewing previous published recommendations for alternative pathway candidates and developing recommendations on the appropriate education and training of these candidates. This manuscript is a summary of the AAPM TG 298 report.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Física Médica/educação , Competência Clínica , Educação de Pós-Graduação em Medicina
4.
AJR Am J Roentgenol ; 216(2): 447-452, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32755177

RESUMO

OBJECTIVE. The purpose of this study was to investigate whether systematic bias in attenuation measurements occurs among CT scanners made by four major manufacturers and the relevance of this bias regarding opportunistic screening for osteoporosis. MATERIALS AND METHODS. Data on attenuation measurement accuracy were acquired using the American College of Radiology (ACR) accreditation phantom and were evaluated in a blinded fashion for four CT manufacturers (8500 accreditation submissions for manufacturer A; 18,575 for manufacturer B; 8278 for manufacturer C; and 32,039 for manufacturer D). The attenuation value for water, acrylic (surrogate for trabecular bone), and Teflon (surrogate for cortical bone; Chemours) materials for an adult abdominal CT technique (120 kV, 240 mA, standard reconstruction algorithm) was used in the analysis. Differences in attenuation value across all manufacturers were assessed using the Kruskal-Wallis test followed by a post hoc test for pairwise comparisons. RESULTS. The mean attenuation value for water ranged from -0.3 to 2.7 HU, with highly significant differences among all manufacturers (p < 0.001). For the trabecular bone surrogate, differences in attenuation values across all manufacturers were also highly significant (p < 0.001), with mean values of 120.9 (SD, 3.5), 124.6 (3.3), 126.9 (4.4), and 123.9 (3.4) HU for manufacturers A, B, C, and D, respectively. For the cortical bone surrogate, differences in attenuation values across all manufacturers were also highly significant (p < 0.001), with mean values of 939.0 (14.2), 874.3 (13.3), 897.6 (11.3), and 912.7 (13.4) HU for manufacturers A, B, C, and D, respectively. CONCLUSION. CT scanners made by different manufacturers show systematic offsets in attenuation measurement when compared with each other. Knowledge of these off-sets is useful for optimizing the accuracy of opportunistic diagnosis of osteoporosis.


Assuntos
Osteoporose/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Acreditação , Viés , Avaliação Educacional , Humanos , Reprodutibilidade dos Testes
5.
AJR Am J Roentgenol ; 215(3): 679-684, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755183

RESUMO

OBJECTIVE. The purpose of this study was to determine dose-area product-to-effective dose (DAP/E) conversion coefficients for a five-view pelvic radiograph series. DAP/E conversion coefficients may be used for radiation dose optimization when designing institutional protocols for pelvic trauma evaluation. MATERIALS AND METHODS. We conducted a retrospective record review of 25 patients at a level 1 trauma center who had sustained pelvic fractures and required a five-view pelvic radiograph series during workup. E values given in International Commission on Radiological Protection Publication 103 were simulated with a PC-based Monte Carlo program in conjunction with anthropomorphic phantoms adjusted on the basis of patient height and weight. Inputs included tube voltage (in kV), tube filtration (in millimeters of aluminum), anode angle, x-ray beam collimation, geometric distances, and angle of projection for each radiograph in the series. An incident polychromatic x-ray spectrum was generated and matched to the corresponding DAP values of each radiograph, and regression analysis was performed for the DAP/E conversion coefficients. RESULTS.E was strongly correlated with DAP independent from body mass index, with a mean global DAP/E conversion coefficient of 0.0125 mSv/dGy · cm2 for all radiographs (R2 = 0.95). Mean DAP/E conversion coefficients were 0.0133, 0.0110, 0.0143, 0.0113, and 0.0101 mSv/dGy · cm2 for anteroposterior, inlet, outlet, Judet left, and Judet right views, respectively (all R2 ≥ 0.94). CONCLUSION. DAP/E conversion coefficients are provided for a five-view pelvic radiograph series to allow reliable estimation of E. Measurement of cumulative E may affirm protocol design changes for the management of pelvic trauma.


Assuntos
Fraturas Ósseas/diagnóstico por imagem , Ossos Pélvicos/diagnóstico por imagem , Ossos Pélvicos/lesões , Doses de Radiação , Radiografia Abdominal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas , Estudos Retrospectivos , Centros de Traumatologia
6.
J Appl Clin Med Phys ; 21(7): 11-15, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31800151

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee May 28, 2019.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Sociedades , Estados Unidos
7.
Clin Orthop Relat Res ; 475(4): 1265-1271, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28050816

RESUMO

BACKGROUND: Voluntary knuckle cracking is a common habit, with a reported prevalence of 25% to 45%. Habitual knuckle cracking also is a frequent source of questions for physicians, and the largest study to date reported an association with functional hand impairments. QUESTIONS/PURPOSES: (1) When compared with subjects who are not habitual knuckle crackers, do habitual knuckle crackers have greater QuickDASH scores, swelling, weakness, joint laxity, or ROM? (2) In subjects who crack their knuckles, does cracking immediately increase ROM? (3) What are the characteristic sonographic findings in joints that crack? METHODS: A prospective, institutional review board-approved study was performed on 400 metacarpophalangeal joints (MPJs) in 40 asymptomatic adult subjects. Of those, 30 subjects had a history of habitual knuckle cracking (defined as daily voluntary popping of MPJs). Clinical history provided by all subjects included a standardized QuickDASH questionnaire. Physical examination was performed by two orthopaedic surgeons (blinded to subjects' knuckle-cracking history and sonographic outcomes). The physical examination included evaluation for swelling, grip strength, and ROM before and after attempted knuckle cracking. Sonographic examination was conducted by one sonographer, with static and real-time cine images recorded before, during, and after MPJ distraction was performed by the subjects. Two musculoskeletal radiologists (blinded to subjects' knuckle-cracking history) interpreted the images for a definite hyperechoic focus during and after MPJ distraction; this was compared against the reference standard of an audible "crack" during joint distraction. RESULTS: Comparing subjects with knuckle cracking with those who did not crack their knuckles, there was no differences in QuickDASH scores (knuckle crackers, 3.7 ± 5.2; nonknuckle crackers, 3.2 ± 6.3; mean difference, 0.6; 95% CI, -3.5 to 4.6; p = 0.786), laxity (knuckle crackers, 2.0 ± 1.8; nonknuckle crackers, 0.3 ± 0.7; mean difference, 1.7; 95% CI, 0.5-2.9; p = 0.191), and grip strength (preultrasound, right hand, p = 0.499, left hand p = 0.575; postultrasound, right hand p = 0.777, left hand p = 0.424); ROM comparisons between subjects with a history of habitual knuckle cracking versus subjects without such a history only yielded increased ROM in joints that cracked during manipulation (knuckle cracking, 143.8° ± 26.5°; nonknuckle cracking, 134.9° ± 28.6°; mean difference, 9.0°; 95% CI, 2.9°-15.1°; p = 0.004). Swelling was not observed in any subjects, including when comparing MPJs before versus after distraction maneuvers that resulted in audible cracks. Immediately after a documented crack, there were greater ranges of motion with active flexion (preultrasound, 85.7° ± 12.4°; postultrasound, 88.6° ± 11.6°; mean difference, -2.9°; 95% CI, -5.1° to -0.8°; p = 0.009), passive flexion (preultrasound, 96.1° ± 12.4°; postultrasound, 100.3° ± 10.4°; mean difference, -4.3°; 95% CI, -6.2° to -2.3°; p < 0.001), passive extension (preultrasound, 41.8° ± 18.1°; postultrasound, 45.2° ± 17.6°; mean difference, -3.5°; 95% CI, -6.9° to -0.1°; p = 0.046), and passive total ROM (preultrasound, 137.8° ± 24.8°; postultrasound, 145.6° ± 23.1°; mean difference, -7.7°; 95% CI, -11.7° to -3.8°; p < 0.001). The characteristic sonographic finding observed during cracking events is an echogenic focus that appears de novo dynamically in the joint during distraction. CONCLUSIONS: We found no evidence of immediate adverse physical examination findings after knuckle cracking. However, we did find a small increase in ROM among joints that cracked compared with those that did not. Future studies should examine if there are any long-term beneficial and adverse clinical outcomes associated with habitual knuckle cracking. LEVEL OF EVIDENCE: Level I, prognostic study.


Assuntos
Hábitos , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/fisiopatologia , Articulação Metacarpofalângica/diagnóstico por imagem , Articulação Metacarpofalângica/fisiopatologia , Ruído , Exame Físico , Ultrassonografia , Adulto , Fenômenos Biomecânicos , Avaliação da Deficiência , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Amplitude de Movimento Articular , Adulto Jovem
8.
AJR Am J Roentgenol ; 206(4): 705-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796990

RESUMO

OBJECTIVE: The purposes of this study were to correlate fetal z-axis location within the maternal abdomen on CT with gestational age and estimate fetal dose reduction of a study limited to the abdomen only, with its lower aspect at the top of the iliac crests, compared with full abdominopelvic CT in pregnant trauma patients. MATERIALS AND METHODS: We performed a study of pregnant patients who underwent CT of the abdomen and pelvis for trauma at a single institution over a 10-year period. The inferior aspect of maternal liver, spleen, gallbladder, pancreas, adrenals, and kidneys was recorded as above or below the iliac crests. The distance from the iliac crest to the top of the fetus or gestational sac was determined. The CT images of the limited and full scanning studies were independently reviewed by two blinded radiologists to identify traumatic injuries. Fetal dose profiles, including both scatter and primary radiation, were computed analytically along the central axis of the patient to estimate fetal dose reduction. Linear regression analysis was performed between gestational age and distance of the fetus to the iliac crests. RESULTS: Thirty-five patients were included (mean age, 26.2 years). Gestational age ranged from 5 to 38 weeks, with 5, 19, and 11 gestations in the first, second, and third trimesters, respectively. All solid organs were above the iliac crests in all patients. In three of six patients, traumatic findings in the pelvis would have been missed with the limited study. There was high correlation between gestational age and distance of the fetus to the iliac crests (R(2) = 0.84). The mean gestational age at which the top of the fetus was at the iliac crest was 17.3 weeks. Using the limited scanning study, fetuses at 5, 20, and 40 weeks of gestation would receive an estimated 4.3%, 26.2%, and 59.9% of the dose, respectively, compared with the dose for the full scanning study. CONCLUSION: In pregnant patients in our series with a history of trauma, CT of the abdomen only was an effective technique to reduce fetal radiation exposure compared with full abdomen and pelvis CT.


Assuntos
Traumatismos Abdominais/diagnóstico por imagem , Feto/efeitos da radiação , Pelve/diagnóstico por imagem , Pelve/lesões , Proteção Radiológica/métodos , Adolescente , Adulto , Meios de Contraste , Feminino , Idade Gestacional , Humanos , Ílio/diagnóstico por imagem , Ílio/lesões , Gravidez , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
9.
Pediatr Radiol ; 45(7): 1072-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25480434

RESUMO

The cornerstone of child abuse imaging is the skeletal survey, but initial imaging with radiographs may not demonstrate acute and non-displaced fractures, especially those involving the ribs. Given the high mortality of undiagnosed non-accidental trauma, timely diagnosis is crucial. CT is more sensitive in assessing rib fractures; however the effective radiation dose of a standard chest CT is high. We retrospectively identified four children (three boys, one girl; age range 1-4 months) admitted between January 2013 and February 2014 with high suspicion for non-accidental trauma from unexplained fractures of the long bones; these children all had CT of the chest when no rib fractures were evident on the skeletal survey. The absorbed radiation dose estimates for organs and tissue from the four-view chest radiographs and subsequent CT were determined using Monte Carlo photon transport software, and the effective dose was calculated using published tissue-weighting factors. In two children, CT showed multiple fractures of the ribs, scapula and vertebral body that were not evident on the initial skeletal survey. The average effective dose for a four-view chest radiograph across the four children was 0.29 mSv and the average effective dose for the chest CT was 0.56 mSv. Therefore the effective dose of a chest CT is on average less than twice that of a four-view chest radiograph. Our protocol thus shows that a reduced-dose chest CT may be useful in the evaluation of high specificity fractures of non-accidental trauma when the four-view chest radiographs are negative.


Assuntos
Maus-Tratos Infantis/diagnóstico , Fraturas das Costelas/diagnóstico por imagem , Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doses de Radiação , Estudos Retrospectivos , Sensibilidade e Especificidade
10.
J Appl Clin Med Phys ; 16(3): 5291, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103491

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.The following terms are used in the AAPM practice guidelines:Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica/educação , Física Médica/normas , Radioterapia (Especialidade)/educação , Radioterapia (Especialidade)/normas , Sociedades Científicas/normas , Ensino/normas , Competência Clínica/normas , Avaliação Educacional/normas , Mentores , Estados Unidos
11.
AJR Am J Roentgenol ; 203(5): 1013-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25341139

RESUMO

OBJECTIVE: The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers' MDCT scanners. MATERIALS AND METHODS: A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. RESULTS: In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). CONCLUSION: Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers.


Assuntos
Absorção de Radiação , Tecido Conjuntivo/diagnóstico por imagem , Tecido Conjuntivo/fisiopatologia , Tomografia Computadorizada Multidetectores/instrumentação , Tomografia Computadorizada Multidetectores/estatística & dados numéricos , Radiografia Abdominal/instrumentação , Radiografia Abdominal/estatística & dados numéricos , Idoso , Meios de Contraste , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino
12.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018710

RESUMO

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Assuntos
Neoplasias da Mama , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Método de Monte Carlo , Neoplasias da Mama/diagnóstico por imagem
13.
AJR Am J Roentgenol ; 201(1): 142-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23789668

RESUMO

OBJECTIVE: The National Lung Screening Trial (NLST) is a multicenter randomized controlled trial comparing low-dose helical CT with chest radiography in the screening of older current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004, when 53,454 participants had been randomized at 33 screening sites. The objective of this study was to determine the effective radiation dose associated with individual chest radiographic screening examinations. SUBJECTS AND METHODS: A total of 73,733 chest radiographic examinations were performed with 92 chest imaging systems. The entrance skin air kerma (ESAK) of participants' chest radiographic examinations was estimated and used in this analysis. The effective dose per ESAK for each examination was determined with a Monte Carlo-based program. The examination effective dose was calculated as the product of the examination ESAK and the Monte Carlo estimate of the ratio of effective dose per ESAK. RESULTS: This study showed that the mean effective dose assessed from 66,157 postero-anterior chest examinations was 0.052 mSv. Additional findings were a median effective dose of 0.038 mSv, a 95th percentile value of 0.136 mSv, and a fifth percentile value of 0.013 mSv. CONCLUSION: The effective dose for participant NLST chest radiographic examinations was determined and is of specific interest in relation to that associated with the previously published NLST low-dose CT examinations conducted during the trial.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Programas de Rastreamento , Doses de Radiação , Radiografia Torácica/métodos , Tomografia Computadorizada Espiral , Idoso , Feminino , Humanos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Fumar/epidemiologia , Estados Unidos/epidemiologia
14.
Pediatr Radiol ; 41(5): 573-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21491197

RESUMO

The exposure index is currently a method by which digital radiography manufacturers provide feedback to the technologist regarding the estimated exposure on the detector, as a surrogate for image signal-to-noise ratio and an indirect indication of digital image quality. Unfortunately, there are as many exposure index values and methods as there are manufacturers, and in an environment with multiple vendors and a need to share data across institutions and dose registry databases, the situation is complicated. Fortunately, a new exposure index of digital X-ray imaging systems has been implemented. Developed concurrently by the International Electrotechnical Commission and the American Association of Physicists in Medicine in cooperation with digital radiography system manufacturers, the index has been implemented as an international standard. As explained, the exposure index does not indicate patient dose but rather a linearly proportional estimate of the incident radiation exposure to the detector. However, the use of the standardized exposure index and its associated target exposure index and deviation index values will likely lead to improved technologist performance in terms of uniformity and use of optimized radiographic techniques, leading to safer care of children needing radiographic examinations. Radiologists will benefit from standardized terminology, and institutions and clinics will be able to compare exposure index values with others through a national dose index registry database now under development. The Alliance for Radiation Safety in Pediatric Imaging, in its role as a benefactor of and advocate for the pediatric patient, is using the Image Gently campaign to disseminate information regarding the exposure index standard for digital radiography so that these benefits can be achieved in a rapid and effective manner.


Assuntos
Pediatria , Doses de Radiação , Proteção Radiológica/normas , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/normas , Radiometria/normas , Carga Corporal (Radioterapia) , Humanos , Sistema de Registros , Sociedades Médicas , Estados Unidos
15.
AJR Am J Roentgenol ; 194(6): 1539-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20489094

RESUMO

OBJECTIVE: The National Lung Screening Trial includes 33 participating institutions that performed 75,133 lung cancer screening CT examinations for 26,724 subjects during 2002-2007. For trial quality assurance reasons, CT radiation dose measurement data were collected from all MDCT scanners used in the trial. MATERIALS AND METHODS: A total of 247 measurements on 96 MDCT scanners were collected using a standard CT dose index (CTDI) measurement protocol. The scan parameters used in the measurements (tube voltage, milliampere-seconds [mAs], and detector-channel configuration) were set according to trial protocol for average size subjects. The normalized weighted CT dose index (CTDI(w)) (computed as CTDI(w)/mAs) obtained from each trial-participating scanner was tabulated. RESULTS: We found a statistically significant difference in normalized CT dose index among CT scanner manufacturers, likely as a result of design differences, such as filtration, bow-tie design, and geometry. Our findings also indicated a statistically significant difference in normalized CT dose index among CT scanner models from the same manufacturer (e.g., GE Healthcare, Siemens Healthcare, and Philips Healthcare). We also found a statistically significant difference in normalized CT dose index among all models and all manufacturers; furthermore, we found a statistically significant difference in normalized CT dose index among CT scanners from all manufacturers when we compared scanners with four or eight data channels to those with 16, 32, or 64 channels, suggesting that more complex scanners have improved dose efficiency. CONCLUSION: Average normalized CT dose index values varied by a factor of almost two for all scanners from all manufacturers. This study was focused on machine-specific normalized CT dose index; patient dose and image quality were not addressed.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Radiometria/métodos , Tomógrafos Computadorizados/normas , Tomografia Computadorizada por Raios X/normas , Ensaios Clínicos como Assunto , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Doses de Radiação , Estados Unidos
16.
Quant Imaging Med Surg ; 10(8): 1580-1589, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742953

RESUMO

BACKGROUND: To determine the relationship between adipose tissue and skeletal muscle measurements on computed tomography (CT) and overall survival and major postoperative complications in patients with soft-tissue sarcoma (STS). METHODS: The retrospective study included 137 STS patients (75 men, 62 women; mean age, 53 years, SD 17.7; mean BMI, 28.5, SD 6.6) who had abdominal CT exams. On a single CT image, at the L4 pedicle level, measurements of visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle area and attenuation were obtained using clinical PACS and specialized segmentation software. Clinical information was recorded, including STS characteristics (size, depth, grade, stage, and site), overall survival, and postoperative complications. The relationships between CT metrics and survival were analyzed using Cox proportional hazard models and those between CT metrics and postoperative complications using logistic regression models. RESULTS: There were 33 deaths and 41 major postoperative complications. Measured on clinical PACS, the psoas area (P=0.003), psoas index (P=0.006), psoas attenuation (P=0.011), and total muscle attenuation (P=0.023) were associated with overall survival. Using specialized software, psoas attenuation was also associated with overall survival (P=0.018). Adipose tissue metrics were not associated with survival or postoperative complications. CONCLUSIONS: In STS patients, CT-derived muscle size and attenuation are associated with overall survival. These prognostic biomarkers can be obtained using specialized segmentation software or routine clinical PACS.

17.
Med Phys ; 47(10): 4775-4785, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32677085

RESUMO

PURPOSE: To validate a normal-resolution (NR) simulation (NRsim) algorithm that uses high-resolution (HR) or super-high resolution (SHR) acquisitions on a commercial HR computed tomography (CT) scanner by comparing image quality between NRsim-generated images and actual NR images. NRsim is intended to allow direct comparison between normal-resolution CT and HR/SHR reconstructions in clinical investigations, without repeating exams. METHODS: The Aquilion Precision CT (Canon Medical Systems Corporation) HR CT scanner has three resolution modes resulting from detector binning in the channel (x-y) and row (z) directions. For NR, each detector element is 0.5 mm × 0.5 mm along the channel and row directions, 0.25 mm × 0.5 mm for HR, and 0.25 mm × 0.25 mm for SHR. The NRsim algorithm simulates NR acquisitions from HR or SHR acquisitions (termed NRHR and NRSHR , respectively) by downsampling the pre-log raw data in the channel direction for the HR acquisitions and in the channel and row direction for the SHR acquisition. The downsampled data are then reconstructed using the same process as NR. The axial modulation transfer function (MTF), slice sensitivity profile (SSP), and CT number accuracy were measured using the Catphan 600 phantom, and the three-dimensional noise power spectrum (NPS) was measured in water-equivalent phantoms for standard protocols across a range of size-specific dose estimates (SSDE): head (6.2-29.8 mGy), lung (2.2-18.2 mGy), and body (5.6-19.4 mGy). The MTF and NPS measurements were combined to estimate low-contrast detectability (LCD) using a non-prewhitening model observer with an eye filter for a 5-mm disk with 10 HU contrast. All metrics were compared for NR, NRHR , and NRSHR images reconstructed using filtered back projection (FBP) and an iterative reconstruction algorithm (AIDR3D). We chose a 15% error threshold as a reasonable definition of success for NRsim when compared against actual NR based on published studies showing that a just-noticeable difference in image noise level for human observers is typically <15%. RESULTS: The axial MTF and SSPs for NRsim were in good agreement with NR demonstrated by a maximum difference of 5.1% for the MTF at 10% and 50% across materials (air, Teflon, LDPE, and polystyrene) and a maximum SSP difference of 2.2%. Noise magnitude differences were within 15% across the SSDE levels with the exception of below 4.5 mGy for the lung protocol with FBP. The relative RMSE of normalized NPS comparisons were all <15%. Differences in CT numbers for NRsim reconstructions were within 2 HU of NR. LCD for NRsim was within 15% of NR with the exception of NRSHR for the lung protocol SSDE levels below 3.7 mGy with FBP. CONCLUSIONS: NRsim, an algorithm for simulating NR acquisitions using HR and SHR raw data, was introduced and shown to generate images with spatial resolution, noise, HU accuracy, and LCD largely equivalent to scans acquired using an actual NR acquisition. At SSDE levels below ~5 mGy for the lung protocol, differences in noise magnitude and LCD for NRSHR were >15% which defines a region where NRsim degrades due to contributions from electronic noise.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Tomógrafos Computadorizados
18.
Med Phys ; 35(6): 2414-23, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18649474

RESUMO

Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and on the receptor type. In most cases, the AECs of the FFDM systems successfully identified exposure parameters resulting in FOM values near the maximum ones, however, there were several examples where AEC performance could be improved.


Assuntos
Exposição Ambiental , Mamografia/métodos , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Imagens de Fantasmas , Sociedades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA