Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932600

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV-Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.


Assuntos
Ataxina-2/genética , Sinalização do Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Regulação para Baixo/genética , Células de Purkinje/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Cerebelo/fisiologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Sinapses/genética
2.
Neurobiol Dis ; 132: 104559, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31376479

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.


Assuntos
Acetiltransferases/genética , Ácido Aspártico/análogos & derivados , Ataxina-2/genética , Técnicas de Introdução de Genes/métodos , Ataxias Espinocerebelares/genética , Repetições de Trinucleotídeos/genética , Acetiltransferases/biossíntese , Animais , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ataxina-2/biossíntese , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
3.
Ann Neurol ; 81(6): 898-903, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439961

RESUMO

Brains from patients with Parkinson disease or dementia with Lewy bodies show aggregation of alpha-synuclein in precerebellar brainstem structures. Furthermore, patients exhibit resting tremor, unstable gait, and impaired balance, which may be associated with cerebellar dysfunction. Therefore, we screened the cerebella of 12 patients with alpha-synucleinopathies for neuropathological changes. Cerebellar nuclei and neighboring white matter displayed numerous aggregates, whereas lobules were mildly affected. Cerebellar aggregation pathology may suggest a prionlike spread originating from affected precerebellar structures, and the high homogeneity between patients with dementia with Lewy bodies and Parkinson disease shows that both diseases likely belong to the same neuropathological spectrum. Ann Neurol 2017;81:898-903.


Assuntos
Doenças Cerebelares , Doença por Corpos de Lewy , alfa-Sinucleína/metabolismo , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
4.
Hippocampus ; 27(5): 495-506, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100031

RESUMO

The hippocampus is subjected to diurnal/circadian rhythms on both the morphological and molecular levels. Certain aspects of cell proliferation in the adult hippocampus are regulated by melatonin and accompanied by apoptosis to ensure proper tissue maintenance and function. The present study investigated Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis in the adult murine hippocampus and their regulation by melatonin receptor type1 and type2 (MT1/2)-mediated signaling. Adult melatonin-proficient C3H/HeN mice and melatonin-proficient (C3H/HeN) mice with targeted deletion of MT1/2 were adapted to a 12-h light, 12-h dark photoperiod and were sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 and activated caspase-3 in combination with different markers for the diverse cell types residing in the hippocampus served to identify and quantify proliferating and apoptotic cells in the hippocampal subregions. ZT-dependent changes in cell proliferation and apoptosis were found exclusively in the subgranular zone (SGZ) and granule cell layer (GCL) of melatonin-proficient mice with functional MT1/2. Cell proliferation in the SGZ showed ZT-dependent changes indicated by an increase of proliferating immature neurons during the dark phase of the 24-h light-dark cycle. Apoptosis showed ZT-dependent changes in the SGZ and GCL indicated by an increase of apoptotic immature neurons at ZT06 (SGZ) and a decrease of immature and mature neurons at ZT18 (GCL). Our results indicate that ZT-dependent changes in proliferation of immature neurons in the SGZ are counterbalanced by ZT-dependent changes in apoptosis of immature and mature neurons in the SGZ and GCL exclusively in mice with functional MT1/2. Therefore, MT1/2-mediated signaling appears to be crucial for generation and timing of ZT-dependent changes in cell proliferation and apoptosis and for differentiation of proliferating cells into neurons in the SGZ. © 2017 Wiley Periodicals, Inc.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Contagem de Células , Hipocampo/citologia , Imuno-Histoquímica , Masculino , Melatonina/metabolismo , Camundongos Endogâmicos C3H , Camundongos Knockout , Neurogênese/fisiologia , Neurônios/citologia , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Nicho de Células-Tronco/fisiologia
5.
Hum Mol Genet ; 24(4): 1061-76, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25296918

RESUMO

The common age-related neurodegeneration of Parkinson's disease can result from dominant causes like increased dosage of vesicle-associated alpha-synuclein (SNCA) or recessive causes like deficiency of mitophagy factor PINK1. Interactions between these triggers and their convergence onto shared pathways are crucial, but currently conflicting evidence exists. Here, we crossed previously characterized mice with A53T-SNCA overexpression and with Pink1 deletion to generate double mutants (DMs). We studied their lifespan and behavior, histological and molecular anomalies at late and early ages. DM animals showed potentiated phenotypes in comparison with both single mutants (SMs), with reduced survival and strongly reduced spontaneous movements from the age of 3 months onwards. In contrast to SMs, a quarter of DM animals manifested progressive paralysis at ages >1 year and exhibited protein aggregates immunopositive for pSer129-SNCA, p62 and ubiquitin in spinal cord and basal brain. Brain proteome quantifications of ubiquitination sites documented altered degradation of SNCA and the DNA-damage marker H2AX at the age of 18 months. Global brain transcriptome profiles and qPCR validation experiments identified many consistent transcriptional dysregulations already at the age of 6 weeks, which were absent from SMs. The observed downregulations for Dapk1, Dcaf17, Rab42 and the novel SNCA-marker Lect1 as well as the upregulations for Dctn5, Mrpl9, Tmem181a, Xaf1 and H2afx reflect changes in ubiquitination, mitochondrial/synaptic/microtubular/cell adhesion dynamics and DNA damage. Thus, our study confirmed that SNCA-triggered neurotoxicity is exacerbated by the absence of PINK1 and identified a novel molecular signature that is detectable early in the course of this double pathology.


Assuntos
Expressão Gênica , Mutação , Proteínas Quinases/genética , alfa-Sinucleína/genética , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Biologia Computacional , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Knockout , Atividade Motora , Doença de Parkinson/genética , Doença de Parkinson/mortalidade , Doença de Parkinson/patologia , Fenótipo , Proteínas Quinases/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Transcriptoma , alfa-Sinucleína/metabolismo
6.
Brain ; 138(Pt 11): 3316-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362908

RESUMO

See Klockgether (doi:10.1093/awv253) for a scientific commentary on this article.The spinocerebellar ataxias types 2 (SCA2) and 3 (SCA3) are autosomal dominantly inherited cerebellar ataxias which are caused by CAG trinucleotide repeat expansions in the coding regions of the disease-specific genes. Although previous post-mortem studies repeatedly revealed a consistent neurodegeneration of the dopaminergic substantia nigra in patients with SCA2 and with SCA3, parkinsonian motor features evolve only rarely. As the pathophysiological mechanism how SCA2 and SCA3 patients do not exhibit parkinsonism is still enigmatic, we performed a positron emission tomography and a post-mortem study of two independent cohorts of SCA2 and SCA3 patients with and without parkinsonian features. Positron emission tomography revealed a significant reduction of dopamine transporter levels in the striatum as well as largely unaffected postsynaptic striatal D2 receptors. In spite of this remarkable pathology in the motor mesostriatal pathway, only 4 of 19 SCA2 and SCA3 patients suffered from parkinsonism. The post-mortem investigation revealed, in addition to an extensive neuronal loss in the dopaminergic substantia nigra of all patients with spinocerebellar ataxia, a consistent affection of the thalamic ventral anterior and ventral lateral nuclei, the pallidum and the cholinergic pedunculopontine nucleus. With the exception of a single patient with SCA3 who suffered from parkinsonian motor features during his lifetime, the subthalamic nucleus underwent severe neuronal loss, which was clearly more severe in its motor territory than in its limbic or associative territories. Our observation that lesions of the motor territory of the subthalamic nucleus were consistently associated with the prevention of parkinsonism in our SCA2 and SCA3 patients matches the clinical experience that selective targeting of the motor territory of the subthalamic nucleus by focal lesions or deep brain stimulation can ameliorate parkinsonian motor features and is likely to counteract the manifestation of parkinsonism in SCA2 and SCA3 despite a severe neurodegeneration of the dopaminergic substantia nigra.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/diagnóstico por imagem , Doença de Machado-Joseph/diagnóstico por imagem , Neostriado/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Ataxina-2/genética , Ataxina-3/genética , Estudos de Casos e Controles , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Masculino , Pessoa de Meia-Idade , Neostriado/metabolismo , Neostriado/patologia , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/complicações , Tomografia por Emissão de Pósitrons , Proteínas Repressoras/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos , Adulto Jovem
7.
Acta Neuropathol ; 124(1): 1-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684686

RESUMO

The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses. According to this categorization, ADCAs are divided into the spinocerebellar ataxias (SCAs) with a progressive disease course, and the episodic ataxias (EA) with episodic occurrences of ataxia. The prominent disease symptoms of the currently known and genetically defined 31 SCA types result from damage to the cerebellum and interconnected brain grays and are often accompanied by more specific extra-cerebellar symptoms. In the present review, we report the genetic and clinical background of the known SCAs and present the state of neuropathological investigations of brain tissue from SCA patients in the final disease stages. Recent findings show that the brain is commonly seriously affected in the polyglutamine SCAs (i.e. SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) and that the patterns of brain damage in these diseases overlap considerably in patients suffering from advanced disease stages. In the more rarely occurring non-polyglutamine SCAs, post-mortem neuropathological data currently are scanty and investigations have been primarily performed in vivo by means of MRI brain imaging. Only a minority of SCAs exhibit symptoms and degenerative patterns allowing for a clear and unambiguous diagnosis of the disease, e.g. retinal degeneration in SCA7, tau aggregation in SCA11, dentate calcification in SCA20, protein depositions in the Purkinje cell layer in SCA31, azoospermia in SCA32, and neurocutaneous phenotype in SCA34. The disease proteins of polyglutamine ataxias and some non-polyglutamine ataxias aggregate as cytoplasmic or intranuclear inclusions and serve as morphological markers. Although inclusions may impair axonal transport, bind transcription factors, and block protein quality control, detailed molecular and pathogenetic consequences remain to be determined.


Assuntos
Encéfalo/patologia , Ataxias Espinocerebelares/patologia , Humanos , Ataxias Espinocerebelares/classificação , Ataxias Espinocerebelares/fisiopatologia
8.
Neuropediatrics ; 43(3): 119-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22614068

RESUMO

This article summarizes evident and recent findings on the characteristics of the neurological phenotype in ataxia telangiectasia (AT), reviews neuropathological and neuroradiological findings, and outlines therapeutic treatment options. In addition, this review offers an overview of current hypotheses on mechanisms of neurodegeneration in AT and discusses their relevance in clinical neurology. The obvious features of neurodegeneration in AT-cerebellar ataxia and dysarthia-are accompanied by a variety of further disabling disease symptoms. Review of the literature outlines a complex pattern of central nervous degeneration in AT that might have been underestimated so far. Neurodegeneration in AT is closely related to the absence or partial lack of the ataxia telangiectasia-mutated (ATM) kinase. ATM is a central player in maintaining cellular homeostasis. Systemic review of the literature reveals a subset of cellular targets hypothesized to count responsible for degeneration in ATM-deficient neurons. Further systematic cliniconeurological, pathoanatomical, and neuroradiological studies are required to understand the structural basis of this neurodegenerative disease. This better understanding has implications for the treatment of AT patients. Second, biochemical and molecular biological studies aimed at deciphering the pathomechanisms of this progressive disorder are necessary for the development of promising future therapies.


Assuntos
Ataxia Telangiectasia/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Neurônios/patologia , Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Humanos , Degeneração Neural/genética , Proteínas Supressoras de Tumor/genética
9.
J Biol Chem ; 285(48): 37811-22, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20858900

RESUMO

Protein aggregation is a hallmark of many neuronal disorders, including the polyglutamine disorder spinocerebellar ataxia 3 and peripheral neuropathies associated with the K141E and K141N mutations in the small heat shock protein HSPB8. In cells, HSPB8 cooperates with BAG3 to stimulate autophagy in an eIF2α-dependent manner and facilitates the clearance of aggregate-prone proteins (Carra, S., Seguin, S. J., Lambert, H., and Landry, J. (2008) J. Biol. Chem. 283, 1437-1444; Carra, S., Brunsting, J. F., Lambert, H., Landry, J., and Kampinga, H. H. (2009) J. Biol. Chem. 284, 5523-5532). Here, we first identified Drosophila melanogaster HSP67Bc (Dm-HSP67Bc) as the closest functional ortholog of human HSPB8 and demonstrated that, like human HSPB8, Dm-HSP67Bc induces autophagy via the eIF2α pathway. In vitro, both Dm-HSP67Bc and human HSPB8 protected against mutated ataxin-3-mediated toxicity and decreased the aggregation of a mutated form of HSPB1 (P182L-HSPB1) associated with peripheral neuropathy. Up-regulation of both Dm-HSP67Bc and human HSPB8 protected and down-regulation of endogenous Dm-HSP67Bc significantly worsened SCA3-mediated eye degeneration in flies. The K141E and K141N mutated forms of human HSPB8 that are associated with peripheral neuropathy were significantly less efficient than wild-type HSPB8 in decreasing the aggregation of both mutated ataxin 3 and P182L-HSPB1. Our current data further support the link between the HSPB8-BAG3 complex, autophagy, and folding diseases and demonstrate that impairment or loss of function of HSPB8 might accelerate the progression and/or severity of folding diseases.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Drosophila/genética , Proteínas de Drosophila/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/fisiopatologia
10.
Ann Neurol ; 67(5): 684-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20437567

RESUMO

Familial Parkinson disease (PD) due to the A30P mutation in the SNCA gene encoding alpha-synuclein is clinically associated with PD symptoms. In this first pathoanatomical study of the brain of an A30P mutation carrier, we observed neuronal loss in the substantia nigra, locus coeruleus, and dorsal motor vagal nucleus, as well as widespread occurrence of alpha-synuclein immunopositive Lewy bodies, Lewy neurites, and glial aggregates. Alpha-synuclein aggregates ultrastructurally resembled Lewy bodies, and biochemical analyses disclosed a significant load of insoluble alpha-synuclein, indicating neuropathological similarities between A30P disease patients and idiopathic PD, with a more severe neuropathology in A30P carriers.


Assuntos
Encefalopatias/genética , Encefalopatias/patologia , Encéfalo/patologia , Mutação/genética , alfa-Sinucleína/genética , Idoso , Alanina/genética , Encéfalo/ultraestrutura , Saúde da Família , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Corpos de Inclusão/patologia , Masculino , Prolina/genética
11.
Acta Neuropathol ; 120(4): 449-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20635090

RESUMO

Protein aggregation is a major pathological hallmark of many neurodegenerative disorders including polyglutamine diseases. Aggregation of the mutated form of the disease protein ataxin-3 into neuronal nuclear inclusions is well described in the polyglutamine disorder spinocerebellar ataxia type 3 (SCA3 or Machado-Joseph disease), although these inclusions are not thought to be directly pathogenic. Neuropil aggregates have not yet been described in SCA3. We performed a systematic immunohistochemical study of serial thick sections through brains of seven clinically diagnosed and genetically confirmed SCA3 patients. Using antibodies against ataxin-3, p62, ubiquitin, the polyglutamine marker 1C2 as well as TDP-43, we analyzed neuronal localization, composition and distribution of aggregates within SCA3 brains. The analysis revealed widespread axonal aggregates in fiber tracts known to undergo neurodegeneration in SCA3. Similar to neuronal nuclear inclusions, the axonal aggregates were ubiquitinated and immunopositive for the proteasome and autophagy associated shuttle protein p62, indicating involvement of neuronal protein quality control mechanisms. Rare TDP-43 positive axonal inclusions were also observed. Based on the correlation between affected fiber tracts and degenerating neuronal nuclei, we hypothesize that these novel axonal inclusions may be detrimental to axonal transport mechanisms and thereby contribute to degeneration of nerve cells in SCA3.


Assuntos
Axônios/ultraestrutura , Encéfalo/patologia , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Doença de Machado-Joseph/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Axônios/patologia , Encéfalo/metabolismo , Feminino , Humanos , Doença de Machado-Joseph/genética , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/metabolismo
14.
Neuropathol Appl Neurobiol ; 34(3): 255-71, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18447897

RESUMO

The identification of the first gene in familial Parkinson's disease (PD) only 10 years ago was a major step in the understanding of the molecular mechanisms in neurodegeneration. Alpha-synuclein aggregation was not only recognized as a key event in neurodegeneration in patients carrying mutations in this gene, but it turned out to be the most consistent marker to define Lewy body pathology also in non-heritable idiopathic PD (IPD). Subsequent comprehensive pathoanatomical studies of IPD brains led to a novel concept of an ascending pathological process in variable stages that are reflected by alpha-synuclein aggregation at specific predilection sites. To date, more than seven genes are known to cause familial PD. The fact that these genetic forms of Parkinsonism present with clinical features indistinguishable from IPD, but may display neuropathological features that are not consistent with IPD, underscores the need of a more differentiated approach to familial and sporadic forms of Parkinsonism. Indeed, in distinct populations, mutations in one single gene were found to cause the disease in up to 40% of patients formerly described as 'idiopathic' cases. These findings indicate that IPD, as defined by a late-onset disorder with no (apparent) genetic contribution, is part of a clinical syndrome that becomes more and more heterogeneous in terms of aetiology, with overlapping clinical and pathoanatomical features. Thus in the present review, we discuss clues from familial PD to our understanding of the molecular pathogenesis of neurodegeneration with special consideration of the variable clinical and neuropathological aspects.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Fenótipo , Humanos , alfa-Sinucleína/genética
15.
Brain Res Rev ; 53(2): 235-49, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17014911

RESUMO

The spinocerebellar ataxias type 2 (SCA2) and type 3 (SCA3) are progressive, currently untreatable and ultimately fatal ataxic disorders, which belong to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Since knowledge regarding the involvement of the central somatosensory system in SCA2 and SCA3 currently is only fragmentary, a variety of somatosensory disease signs remained unexplained or widely misunderstood. The present review (1) draws on the current knowledge in the field of neuroanatomy, (2) describes the anatomy and functional neuroanatomy of the human central somatosensory system, (3) provides an overview of recent findings regarding the affection of the central somatosensory system in SCA2 and SCA3 patients, and (4) points out the underestimated pathogenic role of the central somatosensory system for somatosensory and somatomotor disease symptoms in SCA2 and SCA3. Finally, based on recent findings in the research fields of neuropathology and neural plasticity, this review supports currently applied and recommends further neurorehabilitative approaches aimed at maintaining, improving, and/or recovering adequate somatomotor output by enforcing and changing somatosensory input in the very early clinical stages of SCA2 and SCA3.


Assuntos
Sistema Nervoso Central/fisiopatologia , Doença de Machado-Joseph/fisiopatologia , Doença de Machado-Joseph/reabilitação , Sensação/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/reabilitação , Animais , Sistema Nervoso Central/patologia , Humanos , Modelos Neurológicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia
16.
J Alzheimers Dis ; 57(3): 683-696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28269779

RESUMO

Alzheimer's disease (AD) represents the most frequent neurodegenerative disease of the human brain worldwide. Currently practiced treatment strategies for AD only include some less effective symptomatic therapeutic interventions, which unable to counteract the disease course of AD. New therapeutic attempts aimed to prevent, reduce, or remove the extracellular depositions of the amyloid-ß protein did not elicit beneficial effects on cognitive deficits or functional decline of AD. In view of the failure of these amyloid-ß-based therapeutic trials and the close correlation between the brain pathology of the cytoskeletal tau protein and clinical AD symptoms, therapeutic attention has since shifted to the tau cytoskeletal protein as a novel drug target. The abnormal hyperphosphorylation and intraneuronal aggregation of this protein are early events in the evolution of the AD-related neurofibrillary pathology, and the brain spread of the AD-related tau aggregation pathology may possibly follow a corruptive protein templating and seeding-like mechanism according to the prion hypothesis. Accordingly, immunotherapeutic targeting of the tau aggregation pathology during the very early pre-tangle phase is currently considered to represent an effective and promising therapeutic approach for AD. Recent studies have shown that the initial immunoreactive tau aggregation pathology already prevails in several subcortical regions in the absence of any cytoskeletal changes in the cerebral cortex. Thus, it may be hypothesized that the subcortical brain regions represent the "port of entry" for the pathogenetic agent from which the disease ascends anterogradely as an "interconnectivity pathology".


Assuntos
Doença de Alzheimer , Encéfalo/metabolismo , Imunoterapia/métodos , Proteínas tau/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Humanos , Proteínas tau/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29276758

RESUMO

Progressive neurodegenerative diseases plague millions of individuals both in the United States and across the world. The current pathology of progressive neurodegenerative tauopathies, such as Alzheimer's disease (AD), Pick's disease, frontotemporal dementia (FTD), and progressive supranuclear palsy, primarily revolves around phosphorylation and hyperphosphorylation of the tau protein. However, more recent evidence suggests acetylation of tau protein at lysine 280 may be a critical step in molecular pathology of these neurodegenerative diseases prior to the tau hyperphosphorylation. Secondary injury cascades such as oxidative stress, endoplasmic reticulum stress, and neuroinflammation contribute to lasting damage within the brain and can be induced by a number of different risk factors. These injury cascades funnel into a common pathway of early tau acetylation, which may serve as the catalyst for progressive degeneration. The post translational modification of tau can result in production of toxic oligomers, contributing to reduced solubility as well as aggregation and formation of neurofibrillary tangles, the hallmark of AD pathology. Chronic Traumatic Encephalopathy (CTE), caused by repetitive brain trauma is also associated with a hyperphosphorylation of tau. We postulated acetylation of tau at lysine 280 in CTE disease could be present prior to the hyperphosphorylation and tested this hypothesis in CTE pathologic specimens. We also tested for ac-tau 280 in early stage Alzheimer's disease (Braak stage 1). Histopathological examination using the ac tau 280 antibody was performed in three Alzheimer's cases and three CTE patients. Presence of ac-tau 280 was confirmed in all cases at early sites of disease manifestation. These findings suggest that tau acetylation may precede tau phosphorylation and could be the first "triggering" event leading to neuronal loss. To the best of our knowledge, this is the first study to identify acetylation of the tau protein in CTE. Prevention of tau acetylation could possibly serve as a novel target for stopping neurodegeneration before it fully begins. In this study, we highlight what is known about tau acetylation and neurodegeneration.

18.
Brain Pathol ; 27(3): 345-355, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377427

RESUMO

The polyglutamine (polyQ) diseases are a group of genetically and clinically heterogeneous neurodegenerative diseases, characterized by the expansion of polyQ sequences in unrelated disease proteins, which form different types of neuronal aggregates. The aim of this study was to characterize the aggregation pathology in the brainstem of spinocerebellar ataxia type 2 (SCA2) and 3 (SCA3) patients. For good recognition of neurodegeneration and rare aggregates, we employed 100 µm PEG embedded brainstem sections, which were immunostained with the 1C2 antibody, targeted at polyQ expansions, or with an antibody against p62, a reliable marker of protein aggregates. Brainstem areas were scored semiquantitatively for neurodegeneration, severity of granular cytoplasmic staining (GCS) and frequency of neuronal nuclear inclusions (NNI). SCA2 and SCA3 tissue exhibited the same aggregate types and similar staining patterns. Several brainstem areas showed statistically significant differences between disease groups, whereby SCA2 showed more severe GCS and SCA3 showed more numerous NNI. We observed a positive correlation between GCS severity and neurodegeneration in SCA2 and SCA3 and an inverse correlation between the frequency of NNI and neurodegeneration in SCA3. Although their respective disease proteins are unrelated, SCA2 and SCA3 showed the same aggregate types. Apparently, the polyQ sequence alone is sufficient as a driver of protein aggregation. This is then modified by protein context and intrinsic properties of neuronal populations. The severity of GCS was the best predictor of neurodegeneration in both disorders, while the inverse correlation of neurodegeneration and NNI in SCA3 tissue implies a protective role of these aggregates.


Assuntos
Tronco Encefálico/patologia , Núcleo Celular/patologia , Citoplasma/patologia , Corpos de Inclusão Intranuclear/patologia , Ataxias Espinocerebelares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Tronco Encefálico/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Expansão das Repetições de Trinucleotídeos
19.
Dis Model Mech ; 10(5): 619-631, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108469

RESUMO

Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Biomarcadores/sangue , Predisposição Genética para Doença , Doença por Corpos de Lewy/sangue , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Transtorno do Comportamento do Sono REM/sangue , RNA/sangue , alfa-Sinucleína/deficiência , Feminino , Heterozigoto , Humanos , Doença por Corpos de Lewy/genética , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Transtorno do Comportamento do Sono REM/fisiopatologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , alfa-Sinucleína/sangue , alfa-Sinucleína/genética
20.
Brain Pathol ; 16(3): 218-27, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16911479

RESUMO

In the last years progress has been made regarding the involvement of the thalamus during the course of the currently known polyglutamine diseases. Although recent studies have shown that the thalamus consistently undergoes neurodegeneration in Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2) it is still unclear whether it is also a consistent target of the pathological process of spinocerebellar ataxia type 3 (SCA3). Accordingly we studied the thalamic pathoanatomy and distribution pattern of ataxin-3 immunopositive neuronal intranuclear inclusions (NI) in nine clinically diagnosed and genetically confirmed SCA3 patients and carried out a detailed statistical analysis of our findings. During our pathoanatomical study we disclosed (i) a consistent degeneration of the ventral anterior, ventral lateral and reticular thalamic nuclei; (ii) a degeneration of the ventral posterior lateral nucleus and inferior and lateral subnuclei of the pulvinar in the majority of these SCA3 patients; and (iii) a degeneration of the ventral posterior medial and lateral posterior thalamic nuclei, the lateral geniculate body and some of the limbic thalamic nuclei in some of them. Upon immunocytochemical analysis we detected NI in all of the thalamic nuclei of all of our SCA3 patients. According to our statistical analysis (i) thalamic neurodegeneration and the occurrence of ataxin-3 immunopositive thalamic NI was not associated with the individual length of the CAG-repeats in the mutated SCA3 allele, the patients age at disease onset and the duration of SCA3 and (ii) thalamic neurodegeneration was not correlated with the occurrence of ataxin-3 immunopositive thalamic NI. This lack of correlation may suggest that ataxin-3 immunopositive NI are not immediately decisive for the fate of affected nerve cells but rather represent unspecific and pathognomonic morphological markers of SCA3.


Assuntos
Corpos de Inclusão Intranuclear/patologia , Doença de Machado-Joseph/patologia , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Tálamo/patologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Ataxina-3 , Feminino , Humanos , Imuno-Histoquímica , Corpos de Inclusão Intranuclear/metabolismo , Doença de Machado-Joseph/metabolismo , Masculino , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Tálamo/metabolismo , Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA