Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 661: 124390, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936443

RESUMO

In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.

2.
ChemMedChem ; 18(10): e202300036, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36847711

RESUMO

The parasitic kinetoplastid diseases Leishmaniasis, Chagas disease and Human African Trypanosomiasis constitute serious threats for populations throughout the (sub-)tropics. Most available drugs to treat these diseases possess inadequate properties and candidates to fill the drug pipeline are urgently needed. Paullone-N5 -acetamides inhibit trypanothione synthetase (TryS), an essential kinetoplastid enzyme, and exhibit antiparasitic activity in the low micromolar range, but lack the desired selectivity against mammalian cells (selectivity index (SI):<10). With the aim to identify the paullones' moieties responsible for TryS inhibition and bioactivity, we applied molecular simplification and ring disconnection approaches. The new indolylacetamides lost activity against the expected molecular target (TryS) compared to the reference paullone MOL2008 (Leishmania infantum TryS IC50 : 150 nM; Trypanosoma brucei bloodstream form EC50 : 4.3 µM and SI: 2.4). However, several of them retained potency (T. b. brucei EC50 : 2.4-12.0 µM) and improved selectivity (SI: 5 to >25).


Assuntos
Antiprotozoários , Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Mamíferos
3.
PLoS One ; 18(11): e0292946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032881

RESUMO

Severe infections with potentially fatal outcomes are caused by parasites from the genera Trypanosoma and Leishmania (class Kinetoplastea). The diseases affect people of remote areas in the tropics and subtropics with limited access to adequate health care. Besides insufficient diagnostics, treatment options are limited, with tenuous developments in recent years. Therefore, new antitrypanosomal antiinfectives are required to fight these maladies. In the presented approach, new compounds were developed and tested on the target trypanothione synthetase (TryS). This enzyme is crucial to the kinetoplastids' unique trypanothione-based thiol redox metabolism and thus for pathogen survival. Preceding studies have shown that N5-substituted paullones display antitrypanosomal activity as well as TryS inhibition. Herein, this compound class was further examined regarding the structure-activity relationships (SAR). Diverse benzazepinone derivatives were designed and tested in cell-based assays on bloodstream Trypanosoma brucei brucei (T. b. brucei) and intracellular amastigotes of Leishmania infantum (L. infantum) as well as in enzyme-based assays on L. infantum TryS (LiTryS) and T. b. brucei TryS (TbTryS). While an exchange of just the substituent in the 9-position of paullones led to potent inhibitors on LiTryS and T. b. brucei parasites, new compounds lacking the indole moiety showed a total loss of activity in both assays. Conclusively, the indole as part of the paullone structure is pivotal for keeping the TryS inhibitory and antitrypanosomal activity of this substance class.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Benzazepinas , Oxirredução , Indóis/farmacologia , Tripanossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA