Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 5308-5317, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38978451

RESUMO

Modulating molecular structure and function at the nanoscale drives innovation across wide-ranging technologies. Electrical control of the bonding of individual DNA base pairs endows DNA with precise nanoscale structural reconfigurability, benefiting efforts in DNA origami and actuation. Here, alloxazine DNA base surrogates were synthesized and incorporated into DNA duplexes to function as a redox-active switch of hydrogen bonding. Circular dichroism (CD) revealed that 24-mer DNA duplexes containing one or two alloxazines exhibited CD spectra and melting transitions similar to DNA with only canonical bases, indicating that the constructs adopt a B-form conformation. However, duplexes were not formed when four or more alloxazines were incorporated into a 24-mer strand. Thiolated duplexes incorporating alloxazines were self-assembled onto multiplexed gold electrodes and probed electrochemically. Square-wave voltammetry (SWV) revealed a substantial reduction peak centered at -0.272 V vs Ag/AgCl reference. Alternating between alloxazine oxidizing and reducing conditions modulated the SWV peak in a manner consistent with the formation and loss of hydrogen bonding, which disrupts the base pair stacking and redox efficiency of the DNA construct. These alternating signals support the assertion that alloxazine can function as a redox-active switch of hydrogen bonding, useful in controlling DNA and bioinspired assemblies.


Assuntos
DNA , Ligação de Hidrogênio , Oxirredução , DNA/química , Teste de Materiais , Flavinas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Tamanho da Partícula , Conformação de Ácido Nucleico , Estrutura Molecular , Técnicas Eletroquímicas
2.
Protein Sci ; 32(12): e4815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874269

RESUMO

DNA helicase activity is essential for the vital DNA metabolic processes of recombination, replication, transcription, translation, and repair. Recently, an unexpected, rapid exponential ATP-stimulated DNA unwinding rate was observed from an Archaeoglobus fulgidus helicase (AfXPB) as compared to the slower conventional helicases from Sulfolobus tokodaii, StXPB1 and StXPB2. This unusual rapid activity suggests a "molecular wrench" mechanism arising from the torque applied by AfXPB on the duplex structure in transitioning from open to closed conformations. However, much remains to be understood. Here, we investigate the concentration dependence of DNA helicase binding and ATP-stimulated kinetics of StXPB2 and AfXPB, as well as their binding and activity in Bax1 complexes, via an electrochemical assay with redox-active DNA monolayers. StXPB2 ATP-stimulated activity is concentration-independent from 8 to 200 nM. Unexpectedly, AfXPB activity is concentration-dependent in this range, with exponential rate constants varying from seconds at concentrations greater than 20 nM to thousands of seconds at lower concentrations. At 20 nM, rapid exponential signal decay ensues, linearly reverses, and resumes with a slower exponential decay. This change in AfXPB activity as a function of its concentration is rationalized as the crossover between the fast molecular wrench and slower conventional helicase modes. AfXPB-Bax1 inhibits rapid activity, whereas the StXPB2-Bax1 complex induces rapid kinetics at higher concentrations. This activity is rationalized with the crystal structures of these complexes. These findings illuminate the different physical models governing molecular wrench activity for improved biological insight into a key factor in DNA repair.


Assuntos
Reparo do DNA , DNA , DNA/química , DNA Helicases/química , Trifosfato de Adenosina/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA