RESUMO
AIMS: Alcohol-associated liver disease (ALD) is a global health problem caused, among other factors, by oxidative stress from the formation of reactive oxygen species (ROS). One important source of ROS is microsomal ethanol metabolism catalyzed by cytochrome P450 2E1 (CYP2E1), which is induced by chronic ethanol consumption. Inhibition of CYP2E1 by clomethiazole (CMZ) decreases oxidative stress in cell cultures and improves ALD in animal studies. Our study aimed to assess the benefits of a CYP2E1 inhibitor (clomethiazole) in detoxification of patients with ALD. METHODS: Open label, randomized controlled clinical trial to study whether CYP2E1 inhibition improves ALD in the patients with alcohol use disorders admitted for alcohol detoxification therapy (ADT). Patients had to have a serum aspartate aminotransferase (AST) activity exceeding twice the upper normal limit at time of admission and be non-cirrhotic defined by fibroscan value <12 kPa. Sixty patients were randomly assigned to ADT with either CMZ or clorazepate (CZP) for 7-10 days in a 1:1 ratio. The chlorzoxazone test of CYP2E1 activity was performed at enrolment and at 2 points during the study. RESULTS: ADT improved hepatic steatosis (controlled attenuation parameter) in both groups significantly. A trend towards a greater improvement in hepatic fat content during ADT (-21.5%) was observed in the CMZ group (252 ± 48 dB/m vs. 321 ± 38 dB/m; P < 0.0001) compared with the CZP group (-13.9%; 273 ± 38 dB/m vs. 317 ± 39 dB/m; P < 0.0001). As already reported, serum AST (P < 0.004) and alanine aminotransferase (ALT) activities (P < 0.0006) significantly decreased in CMZ patients as compared with patients on CZP by the end of hospitalization. A significant correlation was found between AST (P = 0.023), ALT (P = 0.009), GGT (P = 0.039) and CAP. CONCLUSION: This study demonstrates that CMZ improves clinical biomarkers for ALD in humans most likely due to its inhibitory effect on CYP2E1. Because of its addictive potential, CMZ can only be given for a short period of time and therefore other CYP2E1 inhibitors to treat ALD are needed.
Assuntos
Alcoolismo , Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Humanos , Clormetiazol/metabolismo , Clormetiazol/farmacologia , Clorazepato Dipotássico , Citocromo P-450 CYP2E1 , Alcoolismo/metabolismo , Espécies Reativas de Oxigênio , Fígado , Hepatopatias Alcoólicas/metabolismo , Etanol/farmacologia , Transaminases/metabolismo , Transaminases/farmacologia , Alanina TransaminaseRESUMO
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.
RESUMO
BACKGROUND & AIMS: Only a minority of excess alcohol drinkers develop cirrhosis. We developed and evaluated risk stratification scores to identify those at highest risk. METHODS: Three cohorts (GenomALC-1: n = 1,690, GenomALC-2: n = 3,037, UK Biobank: relevant n = 6,898) with a history of heavy alcohol consumption (≥80 g/day (men), ≥50 g/day (women), for ≥10 years) were included. Cases were participants with alcohol-related cirrhosis. Controls had a history of similar alcohol consumption but no evidence of liver disease. Risk scores were computed from up to 8 genetic loci identified previously as associated with alcohol-related cirrhosis and 3 clinical risk factors. Score performance for the stratification of alcohol-related cirrhosis risk was assessed and compared across the alcohol-related liver disease spectrum, including hepatocellular carcinoma (HCC). RESULTS: A combination of 3 single nucleotide polymorphisms (SNPs) (PNPLA3:rs738409, SUGP1-TM6SF2:rs10401969, HSD17B13:rs6834314) and diabetes status best discriminated cirrhosis risk. The odds ratios (ORs) and (95% CIs) between the lowest (Q1) and highest (Q5) score quintiles of the 3-SNP score, based on independent allelic effect size estimates, were 5.99 (4.18-8.60) (GenomALC-1), 2.81 (2.03-3.89) (GenomALC-2), and 3.10 (2.32-4.14) (UK Biobank). Patients with diabetes and high risk scores had ORs of 14.7 (7.69-28.1) (GenomALC-1) and 17.1 (11.3-25.7) (UK Biobank) compared to those without diabetes and with low risk scores. Patients with cirrhosis and HCC had significantly higher mean risk scores than patients with cirrhosis alone (0.76 ± 0.06 vs. 0.61 ± 0.02, p = 0.007). Score performance was not significantly enhanced by information on additional genetic risk variants, body mass index or coffee consumption. CONCLUSIONS: A risk score based on 3 genetic risk variants and diabetes status enables the stratification of heavy drinkers based on their risk of cirrhosis, allowing for the provision of earlier preventative interventions. LAY SUMMARY: Excessive chronic drinking leads to cirrhosis in some people, but so far there is no way to identify those at high risk of developing this debilitating disease. We developed a genetic risk score that can identify patients at high risk. The risk of cirrhosis is increased >10-fold with just two risk factors - diabetes and a high genetic risk score. Risk assessment using this test could enable the early and personalised management of this disease in high-risk patients.
Assuntos
Predisposição Genética para Doença/classificação , Cirrose Hepática Alcoólica/diagnóstico , Medição de Risco/métodos , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/psicologia , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Cirrose Hepática Alcoólica/etiologia , Cirrose Hepática Alcoólica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Medição de Risco/estatística & dados numéricosRESUMO
BACKGROUND AND AIMS: Only a minority of heavy drinkers progress to alcohol-associated cirrhosis (ALC). The aim of this study was to identify common genetic variants that underlie risk for ALC. APPROACH AND RESULTS: We analyzed data from 1,128 subjects of European ancestry with ALC and 614 heavy-drinking subjects without known liver disease from Australia, the United States, the United Kingdom, and three countries in Europe. A genome-wide association study (GWAS) was performed, adjusting for principal components and clinical covariates (alcohol use, age, sex, body mass index, and diabetes). We validated our GWAS findings using UK Biobank. We then performed a meta-analysis combining data from our study, the UK Biobank, and a previously published GWAS. Our GWAS found genome-wide significant risk association of rs738409 in patatin-like phospholipase domain containing 3 (PNPLA3) (odds ratio [OR] = 2.19 [G allele], P = 4.93 × 10-17 ) and rs4607179 near HSD17B13 (OR = 0.57 [C allele], P = 1.09 × 10-10 ) with ALC. Conditional analysis accounting for the PNPLA3 and HSD17B13 loci identified a protective association at rs374702773 in Fas-associated factor family member 2 (FAF2) (OR = 0.61 [del(T) allele], P = 2.56 × 10-8 ) for ALC. This association was replicated in the UK Biobank using conditional analysis (OR = 0.79, P = 0.001). Meta-analysis (without conditioning) confirmed genome-wide significance for the identified FAF2 locus as well as PNPLA3 and HSD17B13. Two other previously known loci (SERPINA1 and SUGP1/TM6SF2) were also genome-wide significant in the meta-analysis. GeneOntology pathway analysis identified lipid droplets as the target for several identified genes. In conclusion, our GWAS identified a locus at FAF2 associated with reduced risk of ALC among heavy drinkers. Like the PNPLA3 and HSD17B13 gene products, the FAF2 product has been localized to fat droplets in hepatocytes. CONCLUSIONS: Our genetic findings implicate lipid droplets in the biological pathway(s) underlying ALC.
Assuntos
Predisposição Genética para Doença/genética , Cirrose Hepática Alcoólica/genética , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.
Assuntos
Hepatopatias Alcoólicas , Pesquisa Translacional Biomédica , Etanol , Humanos , Fígado , Hepatopatias Alcoólicas/genéticaRESUMO
INTRODUCTION: Sustained high alcohol intake is necessary but not sufficient to produce alcohol-related cirrhosis. Identification of risk factors, apart from lifetime alcohol exposure, would assist in discovery of mechanisms and prediction of risk. METHODS: We conducted a multicenter case-control study (GenomALC) comparing 1,293 cases (with alcohol-related cirrhosis, 75.6% male) and 754 controls (with equivalent alcohol exposure but no evidence of liver disease, 73.6% male). Information confirming or excluding cirrhosis, and on alcohol intake and other potential risk factors, was obtained from clinical records and by interview. Case-control differences in risk factors discovered in the GenomALC participants were validated using similar data from 407 cases and 6,573 controls from UK Biobank. RESULTS: The GenomALC case and control groups reported similar lifetime alcohol intake (1,374 vs 1,412 kg). Cases had a higher prevalence of diabetes (20.5% (262/1,288) vs 6.5% (48/734), P = 2.27 × 10-18) and higher premorbid body mass index (26.37 ± 0.16 kg/m2) than controls (24.44 ± 0.18 kg/m2, P = 5.77 × 10-15). Controls were significantly more likely to have been wine drinkers, coffee drinkers, smokers, and cannabis users than cases. Cases reported a higher proportion of parents who died of liver disease than controls (odds ratio 2.25 95% confidence interval 1.55-3.26). Data from UK Biobank confirmed these findings for diabetes, body mass index, proportion of alcohol as wine, and coffee consumption. DISCUSSION: If these relationships are causal, measures such as weight loss, intensive treatment of diabetes or prediabetic states, and coffee consumption should reduce the risk of alcohol-related cirrhosis.
Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Café , Diabetes Mellitus/epidemiologia , Cirrose Hepática Alcoólica/epidemiologia , Uso da Maconha/epidemiologia , Obesidade/epidemiologia , Fumar/epidemiologia , Chá , Bebidas Alcoólicas , Austrália/epidemiologia , Estudos de Casos e Controles , Feminino , França/epidemiologia , Alemanha/epidemiologia , Humanos , Modelos Logísticos , Masculino , Anamnese , Pessoa de Meia-Idade , Fatores de Risco , Suíça , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , VinhoRESUMO
Noninvasive assessment of disease activity in patients with nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) is still unsettled, but essential for the evaluation of disease progression. We here studied the association of total (M65) and caspase-cleaved (M30) serum keratin-18 fragments (n = 204) with histological parameters (n = 106) in heavy drinkers primarily admitted for alcohol withdrawal before and after alcohol detoxification. An age-, sex-, and fibrosis-stage matched NAFLD cohort (n = 30) was used for comparison. The prognostic value of M30 and M65 levels were assessed in an additional prospectively followed-up cohort of 230 patients with alcoholic cirrhosis (AC) using competing risk analyses. Among the histological parameters, both M30/65 correlated significantly and better than any other serum marker with apoptosis and liver damage, such as ballooning (r = 0.65; P < 0.001), followed by lobular inflammation (0.48; P < 0.001), steatosis (0.46; P < 0.001), but less with fibrosis (0.24; P < 0.001). Area under the receiver operating characteristics curves to detect ballooning, steatosis, or steatohepatitis (SH) were slightly better for M30 (P < 0.005). Optimal M30 cut-off values for mild and severe ballooning were 330 and 420 U/L, and 290 and 330 U/L for SH grades 1 and 2. No significant differences of M30/65 were found between the matched NAFLD and ALD cohort. In contrast to aspartate-amino-transferase and M65, M30 levels increased significantly from 391 to 518 U/L during alcohol detoxification. Moreover, levels of M30 and M65 predicted non-hepatocellular carcinoma liver-related mortality in patients with AC during a mean observation interval of 67.2 months. CONCLUSION: Our data suggest M30 as highly specific marker of liver apoptosis both in ALD and NAFLD. In addition, hepatocellular apoptosis, as determined by M30 levels, occurs during alcohol withdrawal, and survival data point toward a novel underestimated role of apoptosis in patients with ALD. (Hepatology 2017;66:96-107).
Assuntos
Delirium por Abstinência Alcoólica/sangue , Causas de Morte , Queratina-18/sangue , Hepatopatias Alcoólicas/sangue , Hepatopatias Alcoólicas/mortalidade , Fragmentos de Peptídeos/sangue , Delirium por Abstinência Alcoólica/mortalidade , Delirium por Abstinência Alcoólica/fisiopatologia , Biomarcadores/análise , Biópsia por Agulha , Caspases/sangue , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/terapia , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/mortalidade , Hepatopatia Gordurosa não Alcoólica/patologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Análise de SobrevidaRESUMO
Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Citocromo P-450 CYP2E1/metabolismo , Adutos de DNA , Neoplasias Hepáticas/patologia , Aldeídos/metabolismo , Animais , Etanol/efeitos adversos , Fígado Gorduroso/patologia , Humanos , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismoRESUMO
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Assuntos
Alcoolismo/complicações , Estilo de Vida , Hepatopatias Alcoólicas/complicações , Microbiota , Hepatopatia Gordurosa não Alcoólica/complicações , Congressos como Assunto , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Hepatite Alcoólica/complicações , Hepatite Alcoólica/enzimologia , Hepatite Alcoólica/genética , Humanos , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo GenéticoRESUMO
BACKGROUND: Chronic alcohol consumption is a risk factor for colorectal cancer. The mechanisms by which ethanol (EtOH) exerts its carcinogenic effect on the colorectal mucosa are not clear and may include oxidative stress with the action of reactive oxygen species (ROS) generated through EtOH metabolism via cytochrome P4502E1 (CYP2E1) leading to carcinogenic etheno-DNA adducts. ROS may also induce apoptosis. However, the effect of chronic EtOH consumption on CYP2E1, etheno-DNA adducts as well as anti-apoptotic proteins in the colorectal mucosa of heavy drinkers without colorectal inflammation is still not known. METHODS: Rectal biopsies from 32 alcoholics (>60 g EtOH/d) and from 12 controls (<20 g EtOH/d) were histologically examined, and immunohistochemistry for CYP2E1 and etheno-DNA adducts was performed. Apoptosis (cleaved PARP) as well as anti-apoptotic proteins including Bcl-xL , Bcl-2, and Mcl-1 were immunohistochemically determined. RESULTS: No significant difference in mucosal CYP2E1 or etheno-DNA adducts was observed between alcoholics and control patients. However, CYP2E1 and etheno-DNA adducts correlated significantly when both groups were combined (p < 0.001). In addition, although apoptosis was found not to be significantly affected by EtOH, the anti-apoptotic protein Mcl-1, but neither Bcl-xL nor Bcl-2, was found to be significantly increased in heavy drinkers as compared to controls (p = 0.014). CONCLUSIONS: Although colorectal CYP2E1 was not found to be significantly increased in alcoholics, CYP2E1 correlated overall with the level of etheno-DNA adducts in the colorectal mucosa, which identifies CYP2E1 as an important factor in colorectal carcinogenesis. Most importantly, however, is the up-regulation of the anti-apoptotic protein Mcl-1 in heavy drinkers counteracting apoptosis and possibly stimulating cancer development.
Assuntos
Alcoolismo/metabolismo , Carcinogênese/induzido quimicamente , Citocromo P-450 CYP2E1/metabolismo , Adutos de DNA/metabolismo , Etanol/toxicidade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Reto/metabolismo , Idoso , Alcoolismo/complicações , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reto/efeitos dos fármacosRESUMO
Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.
Assuntos
Transformação Celular Neoplásica , Etanol/toxicidade , Acetaldeído/toxicidade , Animais , Carcinógenos/toxicidade , Metilação de DNA , HumanosRESUMO
BACKGROUND & AIMS: It is well known that inflammation increases liver stiffness (LS) in patients with chronic hepatitis C (HCV) and alcoholic liver disease (ALD) independent of fibrosis stage, but no inflammation-adapted cut-off values have been settled so far. An early identification of rapid fibrosers, however, is essential to decide whom to treat first with the novel but expensive antiviral drugs. METHODS: Liver stiffness, biopsy-proven fibrosis stages F0-F4 (METAVIR or Kleiner score) and routine laboratory parameters were studied in 2068 patients with HCV (n = 1391) and ALD (n = 677). RESULTS: Among the routine parameters for liver damage, AST correlated best with LS (HCV: r = 0.54, P < 0.0001 and ALD: r = 0.34, P < 0.0001). In the absence of elevated transaminases, cut-off values were almost identical between HCV and ALD for F1-2, F3 and F4 (HCV: 5.1, 9.0 and 11.9 kPa vs ALD: 4.9, 8.1 and 10.5 kPa). These cut-off values increased exponentially as a function of median AST level. The impact of AST on LS was higher in lobular-pronounced ALD as compared to portal tract-localized HCV. Most notably, Cohen's weighted Kappa displayed an improved agreement of the novel AST-dependent cut-off values with histological fibrosis stage both for HCV (0.68 vs 0.65) and ALD (0.80 vs 0.76). CONCLUSIONS: The novel AST-adapted cut-off values improve non-invasive fibrosis staging in HCV and ALD and may be also applied to other liver diseases. Especially in HCV, they could help to decide whom to treat first with the novel but expensive antiviral drugs.
Assuntos
Aspartato Aminotransferases/análise , Hepatite C Crônica , Inflamação , Cirrose Hepática , Hepatopatias Alcoólicas , Fígado , Adulto , Biópsia/métodos , Progressão da Doença , Técnicas de Imagem por Elasticidade/métodos , Feminino , Hepatite C Crônica/complicações , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Prognóstico , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The risk of alcohol-related liver cirrhosis increases with increasing alcohol consumption, but many people with very high intake escape from liver disease. We postulate that susceptibility to alcoholic cirrhosis has a complex genetic component and propose that this can be dissected through a large and sufficiently powered genomewide association study (GWAS). METHODS: The GenomALC Consortium comprises researchers from Australia, France, Germany, Switzerland, United Kingdom, and United States, with a joint aim of exploring the genetic and genomic basis of alcoholic cirrhosis. For this National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism funded study, we are recruiting high-risk drinkers who are either cases (with alcoholic cirrhosis) or controls (drinking comparable amounts over similar time, but free of significant liver disease). Extensive phenotypic data are obtained using semistructured interviews and patient records, and blood samples are collected. RESULTS: We have successfully recruited 859 participants including 538 matched case-control samples as of September 2014, using study-specific inclusion-exclusion criteria and data collection protocols. Of these, 580 are cases (442 men and 138 women) and 279 are controls (205 men and 74 women). Duration of excessive drinking was slightly greater in cases than controls and was significantly less in women than men. Cases had significantly lower lifetime alcohol intake than controls. Both cases and controls had a high prevalence of reported parental alcohol problems, but cases were significantly more likely to report that a father with alcohol problems had died from liver disease (odds ratio 2.53, 95% confidence interval 1.31 to 4.87, p = 0.0055). CONCLUSIONS: Recruitment of participants for a GWAS of alcoholic cirrhosis has proved feasible across countries with multiple sites. Affected patients often consume less alcohol than unaffected ones, emphasizing the existence of individual vulnerability factors. Cases are more likely to report liver disease in a father with alcohol problems than controls, consistent with a potential genetic component to the risk of alcoholic cirrhosis.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Internacionalidade , Cirrose Hepática Alcoólica/genética , Consumo de Bebidas Alcoólicas , Austrália , Estudos de Casos e Controles , Protocolos Clínicos , Saúde da Família , França , Alemanha , Seleção de Pacientes , Suíça , Reino Unido , Estados UnidosRESUMO
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Assuntos
Hepatopatias Alcoólicas , Citocromo P-450 CYP2E1/genética , Humanos , Polimorfismo Genético , Pesquisa Translacional BiomédicaRESUMO
The mechanisms by which chronic alcohol consumption enhances carcinogenesis include acetaldehyde (AA) generated by alcohol dehydrogenase and reactive oxygen species (ROS) generated predominantly by cytochrome P450 2E1 (CYP2E1), but also by other factors during inflammation. In addition, ethanol also alters epigenetics by changing DNA and histone methylation and acetylation. A loss of retinoic acid due to a CYP2E1-related enhanced degradation results in enhanced cellular proliferation and decreased cell differentiation. Changes in cancer genes and in signaling pathways (MAPK, RAS, Rb, TGFß, p53, PTEN, ECM, osteopontin, Wnt) may also contribute to ethanol-mediated mechanisms in carcinogenesis. Finally, immunosuppression may facilitate tumor spread. In the present review major emphasis is led on AA and ROS. While AA binds to proteins and DNA generating carcinogenic DNA adducts and inhibiting DNA repair and DNA methylation, ROS results in lipid peroxidation with the generation of lipid peroxidation products such as 4-hydoxynonenal which binds to DNA-forming highly carcinogenic exocyclic DNA adducts. ROS production correlates significantly with CYP2E1 in the liver but also in the esophagus, and its generation can be significantly reduced by the specific CYP2E1 inhibitor clomethiazole. Finally, CMZ also inhibits alcohol-mediated nitrosamine-induced hepatocarcinogenesis.
Assuntos
Acetaldeído/toxicidade , Citocromo P-450 CYP2E1/fisiologia , Etanol/toxicidade , Neoplasias/induzido quimicamente , Acetaldeído/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Humanos , Isoenzimas/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Espécies Reativas de Oxigênio/metabolismo , Retinal Desidrogenase/genéticaRESUMO
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Animais , HumanosRESUMO
This paper is based upon the 'Charles Lieber Satellite Symposia' organized by Manuela G. Neuman at each of the 2009-2012 Research Society on Alcoholism (RSA) Annual Meetings. The presentations represent a broad spectrum dealing with alcoholic liver disease (ALD). In addition, a literature search (2008-2013) in the discussed area was performed in order to obtain updated data. The presentations are focused on genetic polymorphisms of ethanol metabolizing enzymes and the role of cytochrome P4502E1 (CYP2E1) in ALD. In addition, alcohol-mediated hepatocarcinogenesis, immune response to alcohol and fibrogenesis in alcoholic hepatitis as well as its co-morbidities with chronic viral hepatitis infections in the presence or absence of human deficiency virus are discussed. Finally, emphasis was led on alcohol and drug interactions as well as liver transplantation for end-stage ALD.
Assuntos
Etanol/farmacocinética , Hepatopatias Alcoólicas/enzimologia , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Indutores do Citocromo P-450 CYP2E1/farmacocinética , Indutores do Citocromo P-450 CYP2E1/farmacologia , Interações Medicamentosas , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Hepatite C Crônica/complicações , Hepatite C Crônica/metabolismo , Antagonistas dos Receptores H2 da Histamina/efeitos adversos , Humanos , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/genética , Transplante de Fígado/mortalidadeRESUMO
We and others have shown that chronic alcohol consumption results in the induction of CYP2E1 in the liver. We have also detected for the first time such an induction in the mucosa of the small intestine and the colon. The overall induction of CYP2E1 shows interindividual variations and occurs already following a daily ingestion of 40 g of ethanol after 1 week. CYP2E1 induction is associated with an increased metabolism of ethanol resulting in the generation of reactive oxygen species (ROS) with direct and indirect carcinogenic action. ROS generated by CYP2E1 may lead to lipid peroxidation and lipid peroxidation products such as 4-hydroxynonenal bind to DNA forming highly carcinogenic exocyclic etheno DNA-adducts. The generation of these adducts has been shown in cell cultures in animal experiments as well as in human liver biopsies. CYP2E1 also metabolizes various procarcinogens present in diets and in tobacco smoke to their carcinogenic metabolites. Among these, nitrosamines seem to be the most important carcinogens. CYP2E1 also degrades retinoic acid and retinol to polar metabolites. Metabolism of retinoic acid not only results in the loss of retinoic acid promoting carcinogenesis through an increase in cell proliferation and dedifferentiation but also in generation of polar metabolites with apoptotic properties. We have shown that chlormethiazole is a specific CYP2E1 inhibitor in humans. Chlormethiazole inhibits CYP2E1 activity and thus blocks the formation of DNA adducts in cell cultures, restores retinoic acids in alcohol fed animals and inhibits chemical induced ethanol mediated hepatocarcinogenesis. Thus, there is increasing evidence that CYP2E1 induced by chronic alcohol consumption plays an important role in alcohol mediated carcinogenesis.