Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 85(15): 7542-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23826874

RESUMO

NF-E2-related factor-2 (Nrf2) activators promote cellular defense mechanism and facilitate disease prevention associated with oxidative stress. In the present study, Nrf2 activators were identified using cell-based luciferase enzyme fragment complementation (EFC) assay, and the mechanism of Nrf2 activation was studied by molecular imaging. Among the various Nrf2 activators tested, pterostilbene (PTS) showed effective Nrf2 activation, as seen by luminometric screening, and validation in a high throughput-intact cell-imaging platform. Further, PTS increased the expression of Nrf2 downstream target genes, which was confirmed using luciferase reporter driven by ARE-NQO1 and ARE-GST1 promoters. Daily administration of PTS disturbed Nrf2/Keap1 interaction and reduced complemented luciferase signals in HEK293TNKS mouse tumor xenografts. This study reveals the potentials of Nrf2 activators as chemosensitizing agents' for therapeutic intervention in cancer treatment. Hence, the validated assay can be used to evaluate the identified activators preclinically in small animal models by noninvasive molecular imaging approach.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Imagem Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antineoplásicos/farmacologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Estilbenos/farmacologia
2.
Oncotarget ; 9(30): 21478-21494, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29765554

RESUMO

Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

3.
Oncotarget ; 6(25): 21547-56, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26280276

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making.


Assuntos
Antineoplásicos/química , Azetidinas/química , Biomarcadores Tumorais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nitrocompostos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Epigênese Genética , Regulação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Luciferases/metabolismo , Luminescência , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , NAD(P)H Desidrogenase (Quinona)/metabolismo , Transplante de Neoplasias , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Vermelha Fluorescente
4.
Br J Pharmacol ; 171(7): 1747-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24417315

RESUMO

BACKGROUND AND PURPOSE: Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be a 'master regulator' of the antioxidant response as it regulates the expression of several genes including phase II metabolic and antioxidant enzymes and thus plays an important role in preventing oxidative stress-mediated disorders, including diabetes. In this study, for the first time, we investigated the protective properties of a naturally available antioxidant, pterostilbene (PTS), against pancreatic beta-cell apoptosis and the involvement of Nrf2 in its mechanism of action. EXPERIMENTAL APPROACH: Immunoblotting and quantitative reverse transcriptase (qRT)-PCR analysis were performed to identify PTS-mediated nuclear translocation of Nrf2 protein and the following activation of target gene expression, respectively, in INS-1E cells. In addition, an annexin-V binding assay was carried out to identify the apoptotic status of PTS-treated INS-1E cells, while confirming the anti-apoptotic potential of Nrf2 by qRT-PCR analysis of the expressions of both pro- and anti-apoptotic genes. KEY RESULTS: PTS induced significant activation of Nrf2, in dose- and time-dependent manner, in streptozotocin-treated INS-1E rat pancreatic beta-cells. Furthermore, PTS increased the expression of target genes downstream of Nrf2, such as heme oxygenase 1 (HO1), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), that confer cellular protection. PTS also up-regulated the expression of anti-apoptotic gene, Bcl-2, with a concomitant reduction in pro-apoptotic Bax and caspase-3 expression. CONCLUSION AND IMPLICATIONS: Collectively, our findings indicate the therapeutic potential of Nrf2 activation by PTS as a promising approach to safeguard pancreatic beta-cells against oxidative damage in diabetes.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Citoproteção , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Fator 2 Relacionado a NF-E2/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA